Create README.md
Browse files
README.md
CHANGED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class CNN(nn.Module):
|
2 |
+
def __init__(self):
|
3 |
+
super(CNN, self).__init__()
|
4 |
+
self.relu = nn.ReLU()
|
5 |
+
self.maxpool = nn.MaxPool2d(kernel_size = 2, stride = 2)
|
6 |
+
self.conv1 = nn.Conv2d(3,32,3,stride = 1, padding = 1)
|
7 |
+
self.conv2 = nn.Conv2d(32,64,3,stride = 1, padding = 1)
|
8 |
+
self.conv3 = nn.Conv2d(64,128,3,stride = 1, padding = 1)
|
9 |
+
self.conv4 = nn.Conv2d(128,256,3,stride = 1, padding = 1)
|
10 |
+
|
11 |
+
self.dropout = nn.Dropout(p = 0.5)
|
12 |
+
self.fc1 = nn.Linear(14*14*256, 4096)
|
13 |
+
self.fc2 = nn.Linear(4096,1024)
|
14 |
+
self.fc3 = nn.Linear(1024, 10)
|
15 |
+
|
16 |
+
def forward(self, x):
|
17 |
+
x = self.maxpool(self.relu(self.conv1(x)))
|
18 |
+
x = self.maxpool(self.relu(self.conv2(x)))
|
19 |
+
x = self.maxpool(self.relu(self.conv3(x)))
|
20 |
+
x = self.maxpool(self.relu(self.conv4(x)))
|
21 |
+
|
22 |
+
x = x.view(-1, 14*14*256)
|
23 |
+
x = self.dropout(self.relu(self.fc1(x)))
|
24 |
+
x = self.dropout(self.relu(self.fc2(x)))
|
25 |
+
x = self.fc3(x)
|
26 |
+
|
27 |
+
return x
|
28 |
+
|
29 |
+
model = CNN().to(device)
|
30 |
+
|
31 |
+
criterion = nn.CrossEntropyLoss()
|
32 |
+
|
33 |
+
optimizer = torch.optim.Adam(model.parameters(), lr = learning_rate)
|
34 |
+
|
35 |
+
############## TENSORBOARD ########################
|
36 |
+
writer.add_graph(model, example_data.to(device))
|
37 |
+
writer.close()
|