boatbomber commited on
Commit
cd0a201
·
1 Parent(s): 1422b58

Upload model

Browse files
.gitattributes CHANGED
@@ -15,6 +15,7 @@
15
  *.npz filter=lfs diff=lfs merge=lfs -text
16
  *.onnx filter=lfs diff=lfs merge=lfs -text
17
  *.ot filter=lfs diff=lfs merge=lfs -text
 
18
  *.parquet filter=lfs diff=lfs merge=lfs -text
19
  *.pb filter=lfs diff=lfs merge=lfs -text
20
  *.pickle filter=lfs diff=lfs merge=lfs -text
 
15
  *.npz filter=lfs diff=lfs merge=lfs -text
16
  *.onnx filter=lfs diff=lfs merge=lfs -text
17
  *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.gguf filter=lfs diff=lfs merge=lfs -text
19
  *.parquet filter=lfs diff=lfs merge=lfs -text
20
  *.pb filter=lfs diff=lfs merge=lfs -text
21
  *.pickle filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ cache/
2
+
3
+ # Byte-compiled / optimized / DLL files
4
+ __pycache__/
5
+ *.py[cod]
6
+ *$py.class
7
+
8
+ # C extensions
9
+ *.so
10
+
11
+ # Distribution / packaging
12
+ .Python
13
+ build/
14
+ develop-eggs/
15
+ dist/
16
+ downloads/
17
+ eggs/
18
+ .eggs/
19
+ lib/
20
+ lib64/
21
+ parts/
22
+ sdist/
23
+ var/
24
+ wheels/
25
+ share/python-wheels/
26
+ *.egg-info/
27
+ .installed.cfg
28
+ *.egg
29
+ MANIFEST
30
+
31
+ # PyInstaller
32
+ # Usually these files are written by a python script from a template
33
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
34
+ *.manifest
35
+ *.spec
36
+
37
+ # Installer logs
38
+ pip-log.txt
39
+ pip-delete-this-directory.txt
40
+
41
+ # Unit test / coverage reports
42
+ htmlcov/
43
+ .tox/
44
+ .nox/
45
+ .coverage
46
+ .coverage.*
47
+ .cache
48
+ nosetests.xml
49
+ coverage.xml
50
+ *.cover
51
+ *.py,cover
52
+ .hypothesis/
53
+ .pytest_cache/
54
+ cover/
55
+
56
+ # Translations
57
+ *.mo
58
+ *.pot
59
+
60
+ # Django stuff:
61
+ *.log
62
+ local_settings.py
63
+ db.sqlite3
64
+ db.sqlite3-journal
65
+
66
+ # Flask stuff:
67
+ instance/
68
+ .webassets-cache
69
+
70
+ # Scrapy stuff:
71
+ .scrapy
72
+
73
+ # Sphinx documentation
74
+ docs/_build/
75
+
76
+ # PyBuilder
77
+ .pybuilder/
78
+ target/
79
+
80
+ # Jupyter Notebook
81
+ .ipynb_checkpoints
82
+
83
+ # IPython
84
+ profile_default/
85
+ ipython_config.py
86
+
87
+ # pyenv
88
+ # For a library or package, you might want to ignore these files since the code is
89
+ # intended to run in multiple environments; otherwise, check them in:
90
+ # .python-version
91
+
92
+ # pipenv
93
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
94
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
95
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
96
+ # install all needed dependencies.
97
+ #Pipfile.lock
98
+
99
+ # UV
100
+ # Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
101
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
102
+ # commonly ignored for libraries.
103
+ #uv.lock
104
+
105
+ # poetry
106
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
107
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
108
+ # commonly ignored for libraries.
109
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
110
+ #poetry.lock
111
+
112
+ # pdm
113
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
114
+ #pdm.lock
115
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
116
+ # in version control.
117
+ # https://pdm.fming.dev/latest/usage/project/#working-with-version-control
118
+ .pdm.toml
119
+ .pdm-python
120
+ .pdm-build/
121
+
122
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
123
+ __pypackages__/
124
+
125
+ # Celery stuff
126
+ celerybeat-schedule
127
+ celerybeat.pid
128
+
129
+ # SageMath parsed files
130
+ *.sage.py
131
+
132
+ # Environments
133
+ .env
134
+ .venv
135
+ env/
136
+ venv/
137
+ ENV/
138
+ env.bak/
139
+ venv.bak/
140
+
141
+ # Spyder project settings
142
+ .spyderproject
143
+ .spyproject
144
+
145
+ # Rope project settings
146
+ .ropeproject
147
+
148
+ # mkdocs documentation
149
+ /site
150
+
151
+ # mypy
152
+ .mypy_cache/
153
+ .dmypy.json
154
+ dmypy.json
155
+
156
+ # Pyre type checker
157
+ .pyre/
158
+
159
+ # pytype static type analyzer
160
+ .pytype/
161
+
162
+ # Cython debug symbols
163
+ cython_debug/
164
+
165
+ # PyCharm
166
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
167
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
168
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
169
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
170
+ #.idea/
171
+
172
+ # PyPI configuration file
173
+ .pypirc
R1-Distill-Qwen-1.5B-Roblox-Luau-F16.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0e30e8583cb2ab0c224506b92ed7bebfd58e724e6c6a5bb0150634d34313564
3
+ size 3560416096
R1-Distill-Qwen-1.5B-Roblox-Luau-Q3_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87717ad83133d97e7232a62abe4cad4a37f7931ceb424789f07b5b5981603161
3
+ size 924455776
R1-Distill-Qwen-1.5B-Roblox-Luau-Q4_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb4492c6c5b1980724f2b5726b7bac2e5798a34aeeabf74cdc1a887a73a97717
3
+ size 1117320544
R1-Distill-Qwen-1.5B-Roblox-Luau-Q5_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:400da0f70785a7c9fbc4177cd99ede82731c817c6f2d9348985183ba6b46e8f4
3
+ size 1285494112
R1-Distill-Qwen-1.5B-Roblox-Luau-Q6_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53d0bd8716e4fd8051126e25497bf2775c7f81caac565cda2b502b750c247696
3
+ size 1464178528
R1-Distill-Qwen-1.5B-Roblox-Luau-Q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb1d02708637fb8dfae3034c32940ba225e1d31d926e7f59cf074f7c632dd222
3
+ size 1894531936
README.md CHANGED
@@ -1,3 +1,44 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ license_link: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B/blob/main/LICENSE
4
+ base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
5
+ finetuned_by: boatbomber
6
+ pipeline_tag: text-generation
7
+ tags:
8
+ - chat
9
+ - reasoning
10
+ - roblox
11
+ - luau
12
+ language:
13
+ - en
14
+ datasets:
15
+ - boatbomber/roblox-info-dump
16
+ - boatbomber/the-luau-stack
17
  ---
18
+
19
+ # R1-Distill-Qwen-1.5B-Roblox-Luau
20
+
21
+ A fine tune of [deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B) using [boatbomber/roblox-info-dump](https://huggingface.co/datasets/boatbomber/roblox-info-dump) and [boatbomber/the-luau-stack](https://huggingface.co/datasets/boatbomber/the-luau-stack) for Roblox domain knowledge.
22
+
23
+ This is intended to be used for speculative decoding with [boatbomber/R1-Distill-Qwen-14B-Roblox-Luau](https://huggingface.co/boatbomber/R1-Distill-Qwen-14B-Roblox-Luau). It can be used standalone in memory constrained environments, but is not nearly as capable as the 14B model as it has so few weights that it cannot learn the same level of detail.
24
+
25
+ Recommended inference settings:
26
+
27
+ | Parameter | Value | Notes |
28
+ | --------- | ----- | ----- |
29
+ | System Prompt | `You are an expert Roblox developer and Luau software engineer.` | Model was fine tuned with this prompt. |
30
+ | temperature | `0.5-0.7` | Underlying R1 Distill uses this. I've found best results with `0.55`. |
31
+ | top_p | `0.95` | Underlying R1 Distill uses this. |
32
+
33
+ Quantization done using [Unsloth](https://docs.unsloth.ai/).
34
+
35
+ Available quants:
36
+
37
+ | Quant | Size | Notes |
38
+ | ----- | ---- | ----- |
39
+ | F16 | 3.56GB | Retains 100% accuracy. Slow and memory hungry. |
40
+ | Q8_O | 1.89GB | High resource use, but generally acceptable. Use when accuracy is crucial. |
41
+ | Q6_K | 1.46GB | Uses Q6_K for all tensors. Good for high end GPUs. |
42
+ | Q5_K_M | 1.29GB | **Recommended.** Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q5_K |
43
+ | Q4_K_M | 1.12GB | **Recommended.** Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K |
44
+ | Q3_K_M | 0.92GB | Uses Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else Q3_K. Quality is noticeably degraded. |
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2ForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 151643,
7
+ "eos_token_id": 151643,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 1536,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 8960,
12
+ "max_position_embeddings": 131072,
13
+ "max_window_layers": 21,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 12,
16
+ "num_hidden_layers": 28,
17
+ "num_key_value_heads": 2,
18
+ "rms_norm_eps": 1e-06,
19
+ "rope_scaling": null,
20
+ "rope_theta": 10000,
21
+ "sliding_window": 4096,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.51.2",
25
+ "use_cache": false,
26
+ "use_mrope": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 151936
29
+ }
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 151646,
4
+ "do_sample": true,
5
+ "eos_token_id": 151643,
6
+ "temperature": 0.6,
7
+ "top_p": 0.95,
8
+ "transformers_version": "4.51.2"
9
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26150ec0963fb216413748ebd6fe9a2133bb6fc0413ef1a6a00cb702defb3691
3
+ size 4996670464
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbbe282fb7062a799e835a97699459df8252352238a77edb0af44c9167fd68c2
3
+ size 2111719976
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 7108352000
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
344
+ "model.norm.weight": "model-00002-of-00002.safetensors"
345
+ }
346
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin▁of▁sentence|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end▁of▁sentence|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|end▁of▁sentence|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "151643": {
7
+ "content": "<|end▁of▁sentence|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "151644": {
15
+ "content": "<|User|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": false
21
+ },
22
+ "151645": {
23
+ "content": "<|Assistant|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "151646": {
31
+ "content": "<|begin▁of▁sentence|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "151647": {
39
+ "content": "<|EOT|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "151648": {
47
+ "content": "<think>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "151649": {
55
+ "content": "</think>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "151650": {
63
+ "content": "<|quad_start|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "151651": {
71
+ "content": "<|quad_end|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "151652": {
79
+ "content": "<|vision_start|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "151653": {
87
+ "content": "<|vision_end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "151654": {
95
+ "content": "<|vision_pad|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "151655": {
103
+ "content": "<|image_pad|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "151656": {
111
+ "content": "<|video_pad|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "151657": {
119
+ "content": "<tool_call>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "151658": {
127
+ "content": "</tool_call>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "151659": {
135
+ "content": "<|fim_prefix|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "151660": {
143
+ "content": "<|fim_middle|>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "151661": {
151
+ "content": "<|fim_suffix|>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "151662": {
159
+ "content": "<|fim_pad|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "151663": {
167
+ "content": "<|repo_name|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "151664": {
175
+ "content": "<|file_sep|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ }
182
+ },
183
+ "bos_token": "<|begin▁of▁sentence|>",
184
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin��>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|>'}}{% endif %}",
185
+ "clean_up_tokenization_spaces": false,
186
+ "eos_token": "<|end▁of▁sentence|>",
187
+ "extra_special_tokens": {},
188
+ "legacy": true,
189
+ "model_max_length": 16384,
190
+ "pad_token": "<|end▁of▁sentence|>",
191
+ "padding_side": "right",
192
+ "sp_model_kwargs": {},
193
+ "tokenizer_class": "LlamaTokenizerFast",
194
+ "unk_token": null,
195
+ "use_default_system_prompt": false
196
+ }
trainer_state.json ADDED
@@ -0,0 +1,1308 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.0,
6
+ "eval_steps": 0,
7
+ "global_step": 182,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.005494505494505495,
14
+ "grad_norm": 15.111852645874023,
15
+ "learning_rate": 1e-05,
16
+ "loss": 2.1607,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.01098901098901099,
21
+ "grad_norm": 15.242596626281738,
22
+ "learning_rate": 9.999255120204248e-06,
23
+ "loss": 2.5391,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.016483516483516484,
28
+ "grad_norm": 6.0544633865356445,
29
+ "learning_rate": 9.997020702755353e-06,
30
+ "loss": 2.0783,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.02197802197802198,
35
+ "grad_norm": 5.135265350341797,
36
+ "learning_rate": 9.993297413402282e-06,
37
+ "loss": 2.1589,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.027472527472527472,
42
+ "grad_norm": 2.2902588844299316,
43
+ "learning_rate": 9.98808636150624e-06,
44
+ "loss": 1.9133,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.03296703296703297,
49
+ "grad_norm": 1.7752385139465332,
50
+ "learning_rate": 9.981389099710132e-06,
51
+ "loss": 1.8006,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.038461538461538464,
56
+ "grad_norm": 1.5874292850494385,
57
+ "learning_rate": 9.973207623475964e-06,
58
+ "loss": 1.7855,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.04395604395604396,
63
+ "grad_norm": 1.318580985069275,
64
+ "learning_rate": 9.96354437049027e-06,
65
+ "loss": 1.7529,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.04945054945054945,
70
+ "grad_norm": 1.1717578172683716,
71
+ "learning_rate": 9.952402219937817e-06,
72
+ "loss": 1.6796,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.054945054945054944,
77
+ "grad_norm": 0.7676920890808105,
78
+ "learning_rate": 9.939784491643734e-06,
79
+ "loss": 1.4974,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.06043956043956044,
84
+ "grad_norm": 1.2009315490722656,
85
+ "learning_rate": 9.925694945084369e-06,
86
+ "loss": 1.4787,
87
+ "step": 11
88
+ },
89
+ {
90
+ "epoch": 0.06593406593406594,
91
+ "grad_norm": 0.7637119293212891,
92
+ "learning_rate": 9.910137778267153e-06,
93
+ "loss": 1.5551,
94
+ "step": 12
95
+ },
96
+ {
97
+ "epoch": 0.07142857142857142,
98
+ "grad_norm": 0.9158480167388916,
99
+ "learning_rate": 9.893117626479778e-06,
100
+ "loss": 1.8532,
101
+ "step": 13
102
+ },
103
+ {
104
+ "epoch": 0.07692307692307693,
105
+ "grad_norm": 0.7787052392959595,
106
+ "learning_rate": 9.874639560909118e-06,
107
+ "loss": 1.6938,
108
+ "step": 14
109
+ },
110
+ {
111
+ "epoch": 0.08241758241758242,
112
+ "grad_norm": 0.7238631248474121,
113
+ "learning_rate": 9.854709087130261e-06,
114
+ "loss": 1.6542,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.08791208791208792,
119
+ "grad_norm": 0.765092134475708,
120
+ "learning_rate": 9.833332143466099e-06,
121
+ "loss": 1.6814,
122
+ "step": 16
123
+ },
124
+ {
125
+ "epoch": 0.09340659340659341,
126
+ "grad_norm": 0.6503499150276184,
127
+ "learning_rate": 9.810515099218004e-06,
128
+ "loss": 1.5824,
129
+ "step": 17
130
+ },
131
+ {
132
+ "epoch": 0.0989010989010989,
133
+ "grad_norm": 0.6926908493041992,
134
+ "learning_rate": 9.78626475276808e-06,
135
+ "loss": 1.5926,
136
+ "step": 18
137
+ },
138
+ {
139
+ "epoch": 0.1043956043956044,
140
+ "grad_norm": 1.1372712850570679,
141
+ "learning_rate": 9.76058832955357e-06,
142
+ "loss": 1.4507,
143
+ "step": 19
144
+ },
145
+ {
146
+ "epoch": 0.10989010989010989,
147
+ "grad_norm": 0.7703443169593811,
148
+ "learning_rate": 9.733493479914031e-06,
149
+ "loss": 1.5304,
150
+ "step": 20
151
+ },
152
+ {
153
+ "epoch": 0.11538461538461539,
154
+ "grad_norm": 0.569968581199646,
155
+ "learning_rate": 9.704988276811883e-06,
156
+ "loss": 1.4274,
157
+ "step": 21
158
+ },
159
+ {
160
+ "epoch": 0.12087912087912088,
161
+ "grad_norm": 0.5467634797096252,
162
+ "learning_rate": 9.675081213427076e-06,
163
+ "loss": 1.3409,
164
+ "step": 22
165
+ },
166
+ {
167
+ "epoch": 0.12637362637362637,
168
+ "grad_norm": 0.7474145889282227,
169
+ "learning_rate": 9.643781200626512e-06,
170
+ "loss": 1.4547,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.13186813186813187,
175
+ "grad_norm": 0.644389271736145,
176
+ "learning_rate": 9.611097564309054e-06,
177
+ "loss": 1.459,
178
+ "step": 24
179
+ },
180
+ {
181
+ "epoch": 0.13736263736263737,
182
+ "grad_norm": 0.6308932304382324,
183
+ "learning_rate": 9.577040042626832e-06,
184
+ "loss": 1.6206,
185
+ "step": 25
186
+ },
187
+ {
188
+ "epoch": 0.14285714285714285,
189
+ "grad_norm": 0.6102603673934937,
190
+ "learning_rate": 9.54161878308377e-06,
191
+ "loss": 1.3853,
192
+ "step": 26
193
+ },
194
+ {
195
+ "epoch": 0.14835164835164835,
196
+ "grad_norm": 0.6312618851661682,
197
+ "learning_rate": 9.504844339512096e-06,
198
+ "loss": 1.5389,
199
+ "step": 27
200
+ },
201
+ {
202
+ "epoch": 0.15384615384615385,
203
+ "grad_norm": 0.5201209187507629,
204
+ "learning_rate": 9.466727668927817e-06,
205
+ "loss": 1.6037,
206
+ "step": 28
207
+ },
208
+ {
209
+ "epoch": 0.15934065934065933,
210
+ "grad_norm": 0.5236848592758179,
211
+ "learning_rate": 9.427280128266049e-06,
212
+ "loss": 1.4423,
213
+ "step": 29
214
+ },
215
+ {
216
+ "epoch": 0.16483516483516483,
217
+ "grad_norm": 0.5750183463096619,
218
+ "learning_rate": 9.38651347099721e-06,
219
+ "loss": 1.4734,
220
+ "step": 30
221
+ },
222
+ {
223
+ "epoch": 0.17032967032967034,
224
+ "grad_norm": 0.4352014362812042,
225
+ "learning_rate": 9.344439843625034e-06,
226
+ "loss": 1.3026,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 0.17582417582417584,
231
+ "grad_norm": 0.5367883443832397,
232
+ "learning_rate": 9.301071782067504e-06,
233
+ "loss": 1.5871,
234
+ "step": 32
235
+ },
236
+ {
237
+ "epoch": 0.1813186813186813,
238
+ "grad_norm": 0.70261549949646,
239
+ "learning_rate": 9.256422207921757e-06,
240
+ "loss": 1.4105,
241
+ "step": 33
242
+ },
243
+ {
244
+ "epoch": 0.18681318681318682,
245
+ "grad_norm": 0.47652918100357056,
246
+ "learning_rate": 9.21050442461406e-06,
247
+ "loss": 1.391,
248
+ "step": 34
249
+ },
250
+ {
251
+ "epoch": 0.19230769230769232,
252
+ "grad_norm": 0.6501890420913696,
253
+ "learning_rate": 9.163332113436031e-06,
254
+ "loss": 1.456,
255
+ "step": 35
256
+ },
257
+ {
258
+ "epoch": 0.1978021978021978,
259
+ "grad_norm": 0.41454020142555237,
260
+ "learning_rate": 9.114919329468283e-06,
261
+ "loss": 1.3535,
262
+ "step": 36
263
+ },
264
+ {
265
+ "epoch": 0.2032967032967033,
266
+ "grad_norm": 0.5200150609016418,
267
+ "learning_rate": 9.065280497392663e-06,
268
+ "loss": 1.3474,
269
+ "step": 37
270
+ },
271
+ {
272
+ "epoch": 0.2087912087912088,
273
+ "grad_norm": 0.5001424551010132,
274
+ "learning_rate": 9.014430407194413e-06,
275
+ "loss": 1.4666,
276
+ "step": 38
277
+ },
278
+ {
279
+ "epoch": 0.21428571428571427,
280
+ "grad_norm": 0.3648586571216583,
281
+ "learning_rate": 8.962384209755453e-06,
282
+ "loss": 1.3461,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 0.21978021978021978,
287
+ "grad_norm": 0.38699260354042053,
288
+ "learning_rate": 8.90915741234015e-06,
289
+ "loss": 1.3933,
290
+ "step": 40
291
+ },
292
+ {
293
+ "epoch": 0.22527472527472528,
294
+ "grad_norm": 0.35994988679885864,
295
+ "learning_rate": 8.854765873974898e-06,
296
+ "loss": 1.3308,
297
+ "step": 41
298
+ },
299
+ {
300
+ "epoch": 0.23076923076923078,
301
+ "grad_norm": 0.3769252300262451,
302
+ "learning_rate": 8.799225800722895e-06,
303
+ "loss": 1.4181,
304
+ "step": 42
305
+ },
306
+ {
307
+ "epoch": 0.23626373626373626,
308
+ "grad_norm": 0.3668324053287506,
309
+ "learning_rate": 8.742553740855507e-06,
310
+ "loss": 1.3021,
311
+ "step": 43
312
+ },
313
+ {
314
+ "epoch": 0.24175824175824176,
315
+ "grad_norm": 0.3954791724681854,
316
+ "learning_rate": 8.684766579921684e-06,
317
+ "loss": 1.3076,
318
+ "step": 44
319
+ },
320
+ {
321
+ "epoch": 0.24725274725274726,
322
+ "grad_norm": 0.363851398229599,
323
+ "learning_rate": 8.625881535716883e-06,
324
+ "loss": 1.3059,
325
+ "step": 45
326
+ },
327
+ {
328
+ "epoch": 0.25274725274725274,
329
+ "grad_norm": 0.35807710886001587,
330
+ "learning_rate": 8.565916153152982e-06,
331
+ "loss": 1.3275,
332
+ "step": 46
333
+ },
334
+ {
335
+ "epoch": 0.25824175824175827,
336
+ "grad_norm": 0.3441619873046875,
337
+ "learning_rate": 8.504888299030748e-06,
338
+ "loss": 1.3718,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 0.26373626373626374,
343
+ "grad_norm": 0.3851041793823242,
344
+ "learning_rate": 8.442816156716386e-06,
345
+ "loss": 1.3519,
346
+ "step": 48
347
+ },
348
+ {
349
+ "epoch": 0.2692307692307692,
350
+ "grad_norm": 0.38189154863357544,
351
+ "learning_rate": 8.379718220723772e-06,
352
+ "loss": 1.2314,
353
+ "step": 49
354
+ },
355
+ {
356
+ "epoch": 0.27472527472527475,
357
+ "grad_norm": 0.3497340977191925,
358
+ "learning_rate": 8.315613291203977e-06,
359
+ "loss": 1.3285,
360
+ "step": 50
361
+ },
362
+ {
363
+ "epoch": 0.2802197802197802,
364
+ "grad_norm": 0.3765724301338196,
365
+ "learning_rate": 8.250520468343722e-06,
366
+ "loss": 1.3046,
367
+ "step": 51
368
+ },
369
+ {
370
+ "epoch": 0.2857142857142857,
371
+ "grad_norm": 0.33693233132362366,
372
+ "learning_rate": 8.184459146674447e-06,
373
+ "loss": 1.2712,
374
+ "step": 52
375
+ },
376
+ {
377
+ "epoch": 0.29120879120879123,
378
+ "grad_norm": 0.33964160084724426,
379
+ "learning_rate": 8.117449009293668e-06,
380
+ "loss": 1.2689,
381
+ "step": 53
382
+ },
383
+ {
384
+ "epoch": 0.2967032967032967,
385
+ "grad_norm": 0.32269054651260376,
386
+ "learning_rate": 8.049510022000365e-06,
387
+ "loss": 1.2281,
388
+ "step": 54
389
+ },
390
+ {
391
+ "epoch": 0.3021978021978022,
392
+ "grad_norm": 0.3472397029399872,
393
+ "learning_rate": 7.980662427346127e-06,
394
+ "loss": 1.2591,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 0.3076923076923077,
399
+ "grad_norm": 0.3756208121776581,
400
+ "learning_rate": 7.910926738603855e-06,
401
+ "loss": 1.2188,
402
+ "step": 56
403
+ },
404
+ {
405
+ "epoch": 0.3131868131868132,
406
+ "grad_norm": 0.341913640499115,
407
+ "learning_rate": 7.84032373365578e-06,
408
+ "loss": 1.2656,
409
+ "step": 57
410
+ },
411
+ {
412
+ "epoch": 0.31868131868131866,
413
+ "grad_norm": 0.3188314735889435,
414
+ "learning_rate": 7.768874448802665e-06,
415
+ "loss": 1.3221,
416
+ "step": 58
417
+ },
418
+ {
419
+ "epoch": 0.3241758241758242,
420
+ "grad_norm": 0.3308219611644745,
421
+ "learning_rate": 7.696600172495997e-06,
422
+ "loss": 1.2503,
423
+ "step": 59
424
+ },
425
+ {
426
+ "epoch": 0.32967032967032966,
427
+ "grad_norm": 0.34545618295669556,
428
+ "learning_rate": 7.62352243899504e-06,
429
+ "loss": 1.4181,
430
+ "step": 60
431
+ },
432
+ {
433
+ "epoch": 0.33516483516483514,
434
+ "grad_norm": 0.42731383442878723,
435
+ "learning_rate": 7.5496630219506805e-06,
436
+ "loss": 1.2316,
437
+ "step": 61
438
+ },
439
+ {
440
+ "epoch": 0.34065934065934067,
441
+ "grad_norm": 0.34381401538848877,
442
+ "learning_rate": 7.475043927917908e-06,
443
+ "loss": 1.3498,
444
+ "step": 62
445
+ },
446
+ {
447
+ "epoch": 0.34615384615384615,
448
+ "grad_norm": 0.29591628909111023,
449
+ "learning_rate": 7.399687389798933e-06,
450
+ "loss": 1.2484,
451
+ "step": 63
452
+ },
453
+ {
454
+ "epoch": 0.3516483516483517,
455
+ "grad_norm": 0.36008334159851074,
456
+ "learning_rate": 7.323615860218844e-06,
457
+ "loss": 1.1903,
458
+ "step": 64
459
+ },
460
+ {
461
+ "epoch": 0.35714285714285715,
462
+ "grad_norm": 0.3181370496749878,
463
+ "learning_rate": 7.246852004835807e-06,
464
+ "loss": 1.2581,
465
+ "step": 65
466
+ },
467
+ {
468
+ "epoch": 0.3626373626373626,
469
+ "grad_norm": 0.3501285910606384,
470
+ "learning_rate": 7.169418695587791e-06,
471
+ "loss": 1.2945,
472
+ "step": 66
473
+ },
474
+ {
475
+ "epoch": 0.36813186813186816,
476
+ "grad_norm": 0.3263450264930725,
477
+ "learning_rate": 7.091339003877826e-06,
478
+ "loss": 1.2323,
479
+ "step": 67
480
+ },
481
+ {
482
+ "epoch": 0.37362637362637363,
483
+ "grad_norm": 0.37200814485549927,
484
+ "learning_rate": 7.012636193699838e-06,
485
+ "loss": 1.358,
486
+ "step": 68
487
+ },
488
+ {
489
+ "epoch": 0.3791208791208791,
490
+ "grad_norm": 0.321250855922699,
491
+ "learning_rate": 6.933333714707094e-06,
492
+ "loss": 1.2074,
493
+ "step": 69
494
+ },
495
+ {
496
+ "epoch": 0.38461538461538464,
497
+ "grad_norm": 0.32449448108673096,
498
+ "learning_rate": 6.8534551952253395e-06,
499
+ "loss": 1.2721,
500
+ "step": 70
501
+ },
502
+ {
503
+ "epoch": 0.3901098901098901,
504
+ "grad_norm": 0.3131982386112213,
505
+ "learning_rate": 6.773024435212678e-06,
506
+ "loss": 1.2757,
507
+ "step": 71
508
+ },
509
+ {
510
+ "epoch": 0.3956043956043956,
511
+ "grad_norm": 0.34203317761421204,
512
+ "learning_rate": 6.692065399168352e-06,
513
+ "loss": 1.2193,
514
+ "step": 72
515
+ },
516
+ {
517
+ "epoch": 0.4010989010989011,
518
+ "grad_norm": 0.312980979681015,
519
+ "learning_rate": 6.6106022089924535e-06,
520
+ "loss": 1.2095,
521
+ "step": 73
522
+ },
523
+ {
524
+ "epoch": 0.4065934065934066,
525
+ "grad_norm": 0.33843284845352173,
526
+ "learning_rate": 6.5286591367987655e-06,
527
+ "loss": 1.1364,
528
+ "step": 74
529
+ },
530
+ {
531
+ "epoch": 0.41208791208791207,
532
+ "grad_norm": 0.30338841676712036,
533
+ "learning_rate": 6.4462605976828395e-06,
534
+ "loss": 1.2184,
535
+ "step": 75
536
+ },
537
+ {
538
+ "epoch": 0.4175824175824176,
539
+ "grad_norm": 0.32572391629219055,
540
+ "learning_rate": 6.363431142447469e-06,
541
+ "loss": 1.2298,
542
+ "step": 76
543
+ },
544
+ {
545
+ "epoch": 0.4230769230769231,
546
+ "grad_norm": 0.32466384768486023,
547
+ "learning_rate": 6.280195450287736e-06,
548
+ "loss": 1.2609,
549
+ "step": 77
550
+ },
551
+ {
552
+ "epoch": 0.42857142857142855,
553
+ "grad_norm": 0.3212321996688843,
554
+ "learning_rate": 6.1965783214377895e-06,
555
+ "loss": 1.298,
556
+ "step": 78
557
+ },
558
+ {
559
+ "epoch": 0.4340659340659341,
560
+ "grad_norm": 0.31591418385505676,
561
+ "learning_rate": 6.112604669781572e-06,
562
+ "loss": 1.2798,
563
+ "step": 79
564
+ },
565
+ {
566
+ "epoch": 0.43956043956043955,
567
+ "grad_norm": 0.32150542736053467,
568
+ "learning_rate": 6.028299515429683e-06,
569
+ "loss": 1.1752,
570
+ "step": 80
571
+ },
572
+ {
573
+ "epoch": 0.44505494505494503,
574
+ "grad_norm": 0.30293920636177063,
575
+ "learning_rate": 5.943687977264584e-06,
576
+ "loss": 1.2313,
577
+ "step": 81
578
+ },
579
+ {
580
+ "epoch": 0.45054945054945056,
581
+ "grad_norm": 0.31878089904785156,
582
+ "learning_rate": 5.858795265456382e-06,
583
+ "loss": 1.2983,
584
+ "step": 82
585
+ },
586
+ {
587
+ "epoch": 0.45604395604395603,
588
+ "grad_norm": 0.310153990983963,
589
+ "learning_rate": 5.773646673951406e-06,
590
+ "loss": 1.1602,
591
+ "step": 83
592
+ },
593
+ {
594
+ "epoch": 0.46153846153846156,
595
+ "grad_norm": 0.31121817231178284,
596
+ "learning_rate": 5.688267572935843e-06,
597
+ "loss": 1.3564,
598
+ "step": 84
599
+ },
600
+ {
601
+ "epoch": 0.46703296703296704,
602
+ "grad_norm": 0.2957365810871124,
603
+ "learning_rate": 5.6026834012766155e-06,
604
+ "loss": 1.1286,
605
+ "step": 85
606
+ },
607
+ {
608
+ "epoch": 0.4725274725274725,
609
+ "grad_norm": 0.3177623152732849,
610
+ "learning_rate": 5.51691965894185e-06,
611
+ "loss": 1.269,
612
+ "step": 86
613
+ },
614
+ {
615
+ "epoch": 0.47802197802197804,
616
+ "grad_norm": 0.3129305839538574,
617
+ "learning_rate": 5.4310018994030974e-06,
618
+ "loss": 1.2497,
619
+ "step": 87
620
+ },
621
+ {
622
+ "epoch": 0.4835164835164835,
623
+ "grad_norm": 0.2926500141620636,
624
+ "learning_rate": 5.3449557220216245e-06,
625
+ "loss": 1.1608,
626
+ "step": 88
627
+ },
628
+ {
629
+ "epoch": 0.489010989010989,
630
+ "grad_norm": 0.28984707593917847,
631
+ "learning_rate": 5.258806764421048e-06,
632
+ "loss": 1.2594,
633
+ "step": 89
634
+ },
635
+ {
636
+ "epoch": 0.4945054945054945,
637
+ "grad_norm": 0.3356908857822418,
638
+ "learning_rate": 5.172580694848541e-06,
639
+ "loss": 1.2022,
640
+ "step": 90
641
+ },
642
+ {
643
+ "epoch": 0.5,
644
+ "grad_norm": 0.31414178013801575,
645
+ "learning_rate": 5.0863032045269435e-06,
646
+ "loss": 1.1703,
647
+ "step": 91
648
+ },
649
+ {
650
+ "epoch": 0.5054945054945055,
651
+ "grad_norm": 0.32916730642318726,
652
+ "learning_rate": 5e-06,
653
+ "loss": 1.2683,
654
+ "step": 92
655
+ },
656
+ {
657
+ "epoch": 0.510989010989011,
658
+ "grad_norm": 0.3171485364437103,
659
+ "learning_rate": 4.913696795473058e-06,
660
+ "loss": 1.2961,
661
+ "step": 93
662
+ },
663
+ {
664
+ "epoch": 0.5164835164835165,
665
+ "grad_norm": 0.3199380040168762,
666
+ "learning_rate": 4.827419305151461e-06,
667
+ "loss": 1.3379,
668
+ "step": 94
669
+ },
670
+ {
671
+ "epoch": 0.521978021978022,
672
+ "grad_norm": 0.3766830861568451,
673
+ "learning_rate": 4.741193235578953e-06,
674
+ "loss": 1.2776,
675
+ "step": 95
676
+ },
677
+ {
678
+ "epoch": 0.5274725274725275,
679
+ "grad_norm": 0.34143537282943726,
680
+ "learning_rate": 4.6550442779783755e-06,
681
+ "loss": 1.2237,
682
+ "step": 96
683
+ },
684
+ {
685
+ "epoch": 0.532967032967033,
686
+ "grad_norm": 0.3254823386669159,
687
+ "learning_rate": 4.568998100596903e-06,
688
+ "loss": 1.2267,
689
+ "step": 97
690
+ },
691
+ {
692
+ "epoch": 0.5384615384615384,
693
+ "grad_norm": 0.2892250716686249,
694
+ "learning_rate": 4.4830803410581506e-06,
695
+ "loss": 1.1432,
696
+ "step": 98
697
+ },
698
+ {
699
+ "epoch": 0.5439560439560439,
700
+ "grad_norm": 0.30142074823379517,
701
+ "learning_rate": 4.397316598723385e-06,
702
+ "loss": 1.2063,
703
+ "step": 99
704
+ },
705
+ {
706
+ "epoch": 0.5494505494505495,
707
+ "grad_norm": 0.3007691502571106,
708
+ "learning_rate": 4.31173242706416e-06,
709
+ "loss": 1.2316,
710
+ "step": 100
711
+ },
712
+ {
713
+ "epoch": 0.554945054945055,
714
+ "grad_norm": 0.304579496383667,
715
+ "learning_rate": 4.226353326048594e-06,
716
+ "loss": 1.1852,
717
+ "step": 101
718
+ },
719
+ {
720
+ "epoch": 0.5604395604395604,
721
+ "grad_norm": 0.3164512813091278,
722
+ "learning_rate": 4.14120473454362e-06,
723
+ "loss": 1.0561,
724
+ "step": 102
725
+ },
726
+ {
727
+ "epoch": 0.5659340659340659,
728
+ "grad_norm": 0.3220779299736023,
729
+ "learning_rate": 4.056312022735417e-06,
730
+ "loss": 1.2721,
731
+ "step": 103
732
+ },
733
+ {
734
+ "epoch": 0.5714285714285714,
735
+ "grad_norm": 0.3365575671195984,
736
+ "learning_rate": 3.9717004845703175e-06,
737
+ "loss": 1.2173,
738
+ "step": 104
739
+ },
740
+ {
741
+ "epoch": 0.5769230769230769,
742
+ "grad_norm": 0.32684552669525146,
743
+ "learning_rate": 3.887395330218429e-06,
744
+ "loss": 1.2247,
745
+ "step": 105
746
+ },
747
+ {
748
+ "epoch": 0.5824175824175825,
749
+ "grad_norm": 0.32608991861343384,
750
+ "learning_rate": 3.803421678562213e-06,
751
+ "loss": 1.285,
752
+ "step": 106
753
+ },
754
+ {
755
+ "epoch": 0.5879120879120879,
756
+ "grad_norm": 0.2869299054145813,
757
+ "learning_rate": 3.7198045497122647e-06,
758
+ "loss": 1.0908,
759
+ "step": 107
760
+ },
761
+ {
762
+ "epoch": 0.5934065934065934,
763
+ "grad_norm": 0.3301023542881012,
764
+ "learning_rate": 3.6365688575525315e-06,
765
+ "loss": 1.1583,
766
+ "step": 108
767
+ },
768
+ {
769
+ "epoch": 0.5989010989010989,
770
+ "grad_norm": 0.3131628632545471,
771
+ "learning_rate": 3.553739402317162e-06,
772
+ "loss": 1.2637,
773
+ "step": 109
774
+ },
775
+ {
776
+ "epoch": 0.6043956043956044,
777
+ "grad_norm": 0.2992359697818756,
778
+ "learning_rate": 3.471340863201237e-06,
779
+ "loss": 1.1538,
780
+ "step": 110
781
+ },
782
+ {
783
+ "epoch": 0.6098901098901099,
784
+ "grad_norm": 0.35789474844932556,
785
+ "learning_rate": 3.389397791007548e-06,
786
+ "loss": 1.254,
787
+ "step": 111
788
+ },
789
+ {
790
+ "epoch": 0.6153846153846154,
791
+ "grad_norm": 0.3820202648639679,
792
+ "learning_rate": 3.307934600831648e-06,
793
+ "loss": 1.2092,
794
+ "step": 112
795
+ },
796
+ {
797
+ "epoch": 0.6208791208791209,
798
+ "grad_norm": 0.29061752557754517,
799
+ "learning_rate": 3.226975564787322e-06,
800
+ "loss": 1.068,
801
+ "step": 113
802
+ },
803
+ {
804
+ "epoch": 0.6263736263736264,
805
+ "grad_norm": 0.28597721457481384,
806
+ "learning_rate": 3.1465448047746626e-06,
807
+ "loss": 1.0609,
808
+ "step": 114
809
+ },
810
+ {
811
+ "epoch": 0.6318681318681318,
812
+ "grad_norm": 0.33867910504341125,
813
+ "learning_rate": 3.0666662852929063e-06,
814
+ "loss": 1.144,
815
+ "step": 115
816
+ },
817
+ {
818
+ "epoch": 0.6373626373626373,
819
+ "grad_norm": 0.3233068883419037,
820
+ "learning_rate": 2.9873638063001633e-06,
821
+ "loss": 1.2267,
822
+ "step": 116
823
+ },
824
+ {
825
+ "epoch": 0.6428571428571429,
826
+ "grad_norm": 0.3006921708583832,
827
+ "learning_rate": 2.9086609961221758e-06,
828
+ "loss": 1.1789,
829
+ "step": 117
830
+ },
831
+ {
832
+ "epoch": 0.6483516483516484,
833
+ "grad_norm": 0.2942849099636078,
834
+ "learning_rate": 2.83058130441221e-06,
835
+ "loss": 1.0921,
836
+ "step": 118
837
+ },
838
+ {
839
+ "epoch": 0.6538461538461539,
840
+ "grad_norm": 0.27584153413772583,
841
+ "learning_rate": 2.7531479951641928e-06,
842
+ "loss": 1.094,
843
+ "step": 119
844
+ },
845
+ {
846
+ "epoch": 0.6593406593406593,
847
+ "grad_norm": 0.2984887361526489,
848
+ "learning_rate": 2.6763841397811576e-06,
849
+ "loss": 1.1287,
850
+ "step": 120
851
+ },
852
+ {
853
+ "epoch": 0.6648351648351648,
854
+ "grad_norm": 0.2923741936683655,
855
+ "learning_rate": 2.6003126102010696e-06,
856
+ "loss": 1.055,
857
+ "step": 121
858
+ },
859
+ {
860
+ "epoch": 0.6703296703296703,
861
+ "grad_norm": 0.3659802973270416,
862
+ "learning_rate": 2.524956072082093e-06,
863
+ "loss": 1.1582,
864
+ "step": 122
865
+ },
866
+ {
867
+ "epoch": 0.6758241758241759,
868
+ "grad_norm": 0.3227543234825134,
869
+ "learning_rate": 2.450336978049322e-06,
870
+ "loss": 1.2737,
871
+ "step": 123
872
+ },
873
+ {
874
+ "epoch": 0.6813186813186813,
875
+ "grad_norm": 0.37304747104644775,
876
+ "learning_rate": 2.37647756100496e-06,
877
+ "loss": 1.114,
878
+ "step": 124
879
+ },
880
+ {
881
+ "epoch": 0.6868131868131868,
882
+ "grad_norm": 0.3021417558193207,
883
+ "learning_rate": 2.3033998275040047e-06,
884
+ "loss": 1.1386,
885
+ "step": 125
886
+ },
887
+ {
888
+ "epoch": 0.6923076923076923,
889
+ "grad_norm": 0.33544647693634033,
890
+ "learning_rate": 2.2311255511973347e-06,
891
+ "loss": 1.2173,
892
+ "step": 126
893
+ },
894
+ {
895
+ "epoch": 0.6978021978021978,
896
+ "grad_norm": 0.35324594378471375,
897
+ "learning_rate": 2.159676266344222e-06,
898
+ "loss": 1.2633,
899
+ "step": 127
900
+ },
901
+ {
902
+ "epoch": 0.7032967032967034,
903
+ "grad_norm": 0.33476221561431885,
904
+ "learning_rate": 2.089073261396148e-06,
905
+ "loss": 1.2073,
906
+ "step": 128
907
+ },
908
+ {
909
+ "epoch": 0.7087912087912088,
910
+ "grad_norm": 0.3145869970321655,
911
+ "learning_rate": 2.0193375726538737e-06,
912
+ "loss": 1.1803,
913
+ "step": 129
914
+ },
915
+ {
916
+ "epoch": 0.7142857142857143,
917
+ "grad_norm": 0.2953707277774811,
918
+ "learning_rate": 1.9504899779996354e-06,
919
+ "loss": 1.161,
920
+ "step": 130
921
+ },
922
+ {
923
+ "epoch": 0.7197802197802198,
924
+ "grad_norm": 0.3447920083999634,
925
+ "learning_rate": 1.8825509907063328e-06,
926
+ "loss": 1.1642,
927
+ "step": 131
928
+ },
929
+ {
930
+ "epoch": 0.7252747252747253,
931
+ "grad_norm": 0.29233863949775696,
932
+ "learning_rate": 1.8155408533255553e-06,
933
+ "loss": 1.2035,
934
+ "step": 132
935
+ },
936
+ {
937
+ "epoch": 0.7307692307692307,
938
+ "grad_norm": 0.33702394366264343,
939
+ "learning_rate": 1.7494795316562791e-06,
940
+ "loss": 1.2529,
941
+ "step": 133
942
+ },
943
+ {
944
+ "epoch": 0.7362637362637363,
945
+ "grad_norm": 0.30078279972076416,
946
+ "learning_rate": 1.6843867087960252e-06,
947
+ "loss": 1.0758,
948
+ "step": 134
949
+ },
950
+ {
951
+ "epoch": 0.7417582417582418,
952
+ "grad_norm": 0.3232959508895874,
953
+ "learning_rate": 1.6202817792762283e-06,
954
+ "loss": 1.143,
955
+ "step": 135
956
+ },
957
+ {
958
+ "epoch": 0.7472527472527473,
959
+ "grad_norm": 0.30444958806037903,
960
+ "learning_rate": 1.557183843283614e-06,
961
+ "loss": 1.1256,
962
+ "step": 136
963
+ },
964
+ {
965
+ "epoch": 0.7527472527472527,
966
+ "grad_norm": 0.3048609793186188,
967
+ "learning_rate": 1.4951117009692528e-06,
968
+ "loss": 1.0198,
969
+ "step": 137
970
+ },
971
+ {
972
+ "epoch": 0.7582417582417582,
973
+ "grad_norm": 0.2926686704158783,
974
+ "learning_rate": 1.4340838468470198e-06,
975
+ "loss": 1.1883,
976
+ "step": 138
977
+ },
978
+ {
979
+ "epoch": 0.7637362637362637,
980
+ "grad_norm": 0.3299303650856018,
981
+ "learning_rate": 1.374118464283119e-06,
982
+ "loss": 1.3322,
983
+ "step": 139
984
+ },
985
+ {
986
+ "epoch": 0.7692307692307693,
987
+ "grad_norm": 0.3428778648376465,
988
+ "learning_rate": 1.3152334200783167e-06,
989
+ "loss": 1.1326,
990
+ "step": 140
991
+ },
992
+ {
993
+ "epoch": 0.7747252747252747,
994
+ "grad_norm": 0.2856198251247406,
995
+ "learning_rate": 1.257446259144494e-06,
996
+ "loss": 1.1355,
997
+ "step": 141
998
+ },
999
+ {
1000
+ "epoch": 0.7802197802197802,
1001
+ "grad_norm": 0.3531911075115204,
1002
+ "learning_rate": 1.2007741992771065e-06,
1003
+ "loss": 1.1216,
1004
+ "step": 142
1005
+ },
1006
+ {
1007
+ "epoch": 0.7857142857142857,
1008
+ "grad_norm": 0.3239804804325104,
1009
+ "learning_rate": 1.145234126025102e-06,
1010
+ "loss": 1.1611,
1011
+ "step": 143
1012
+ },
1013
+ {
1014
+ "epoch": 0.7912087912087912,
1015
+ "grad_norm": 0.3118308186531067,
1016
+ "learning_rate": 1.0908425876598512e-06,
1017
+ "loss": 1.1975,
1018
+ "step": 144
1019
+ },
1020
+ {
1021
+ "epoch": 0.7967032967032966,
1022
+ "grad_norm": 0.3164444863796234,
1023
+ "learning_rate": 1.037615790244549e-06,
1024
+ "loss": 1.1853,
1025
+ "step": 145
1026
+ },
1027
+ {
1028
+ "epoch": 0.8021978021978022,
1029
+ "grad_norm": 0.2902736961841583,
1030
+ "learning_rate": 9.85569592805588e-07,
1031
+ "loss": 1.1573,
1032
+ "step": 146
1033
+ },
1034
+ {
1035
+ "epoch": 0.8076923076923077,
1036
+ "grad_norm": 0.31620684266090393,
1037
+ "learning_rate": 9.347195026073369e-07,
1038
+ "loss": 1.2624,
1039
+ "step": 147
1040
+ },
1041
+ {
1042
+ "epoch": 0.8131868131868132,
1043
+ "grad_norm": 0.2949465215206146,
1044
+ "learning_rate": 8.850806705317183e-07,
1045
+ "loss": 1.2211,
1046
+ "step": 148
1047
+ },
1048
+ {
1049
+ "epoch": 0.8186813186813187,
1050
+ "grad_norm": 0.298286110162735,
1051
+ "learning_rate": 8.366678865639688e-07,
1052
+ "loss": 1.1548,
1053
+ "step": 149
1054
+ },
1055
+ {
1056
+ "epoch": 0.8241758241758241,
1057
+ "grad_norm": 0.2811017334461212,
1058
+ "learning_rate": 7.894955753859412e-07,
1059
+ "loss": 1.1338,
1060
+ "step": 150
1061
+ },
1062
+ {
1063
+ "epoch": 0.8296703296703297,
1064
+ "grad_norm": 0.3239135444164276,
1065
+ "learning_rate": 7.435777920782444e-07,
1066
+ "loss": 1.2334,
1067
+ "step": 151
1068
+ },
1069
+ {
1070
+ "epoch": 0.8351648351648352,
1071
+ "grad_norm": 0.3123372793197632,
1072
+ "learning_rate": 6.989282179324963e-07,
1073
+ "loss": 1.1689,
1074
+ "step": 152
1075
+ },
1076
+ {
1077
+ "epoch": 0.8406593406593407,
1078
+ "grad_norm": 0.2981259524822235,
1079
+ "learning_rate": 6.555601563749675e-07,
1080
+ "loss": 1.1256,
1081
+ "step": 153
1082
+ },
1083
+ {
1084
+ "epoch": 0.8461538461538461,
1085
+ "grad_norm": 0.2992076873779297,
1086
+ "learning_rate": 6.134865290027903e-07,
1087
+ "loss": 1.1945,
1088
+ "step": 154
1089
+ },
1090
+ {
1091
+ "epoch": 0.8516483516483516,
1092
+ "grad_norm": 0.29684075713157654,
1093
+ "learning_rate": 5.727198717339511e-07,
1094
+ "loss": 1.1513,
1095
+ "step": 155
1096
+ },
1097
+ {
1098
+ "epoch": 0.8571428571428571,
1099
+ "grad_norm": 0.29401788115501404,
1100
+ "learning_rate": 5.332723310721855e-07,
1101
+ "loss": 1.1114,
1102
+ "step": 156
1103
+ },
1104
+ {
1105
+ "epoch": 0.8626373626373627,
1106
+ "grad_norm": 0.31163498759269714,
1107
+ "learning_rate": 4.951556604879049e-07,
1108
+ "loss": 1.0412,
1109
+ "step": 157
1110
+ },
1111
+ {
1112
+ "epoch": 0.8681318681318682,
1113
+ "grad_norm": 0.2719607353210449,
1114
+ "learning_rate": 4.5838121691622995e-07,
1115
+ "loss": 1.024,
1116
+ "step": 158
1117
+ },
1118
+ {
1119
+ "epoch": 0.8736263736263736,
1120
+ "grad_norm": 0.29391375184059143,
1121
+ "learning_rate": 4.2295995737316854e-07,
1122
+ "loss": 1.1597,
1123
+ "step": 159
1124
+ },
1125
+ {
1126
+ "epoch": 0.8791208791208791,
1127
+ "grad_norm": 0.30751943588256836,
1128
+ "learning_rate": 3.8890243569094874e-07,
1129
+ "loss": 1.1241,
1130
+ "step": 160
1131
+ },
1132
+ {
1133
+ "epoch": 0.8846153846153846,
1134
+ "grad_norm": 0.29940909147262573,
1135
+ "learning_rate": 3.5621879937348836e-07,
1136
+ "loss": 1.1897,
1137
+ "step": 161
1138
+ },
1139
+ {
1140
+ "epoch": 0.8901098901098901,
1141
+ "grad_norm": 0.28088250756263733,
1142
+ "learning_rate": 3.2491878657292643e-07,
1143
+ "loss": 1.1361,
1144
+ "step": 162
1145
+ },
1146
+ {
1147
+ "epoch": 0.8956043956043956,
1148
+ "grad_norm": 0.3590313494205475,
1149
+ "learning_rate": 2.9501172318811834e-07,
1150
+ "loss": 1.1671,
1151
+ "step": 163
1152
+ },
1153
+ {
1154
+ "epoch": 0.9010989010989011,
1155
+ "grad_norm": 0.28756317496299744,
1156
+ "learning_rate": 2.6650652008597067e-07,
1157
+ "loss": 1.1201,
1158
+ "step": 164
1159
+ },
1160
+ {
1161
+ "epoch": 0.9065934065934066,
1162
+ "grad_norm": 0.30580711364746094,
1163
+ "learning_rate": 2.394116704464294e-07,
1164
+ "loss": 1.1954,
1165
+ "step": 165
1166
+ },
1167
+ {
1168
+ "epoch": 0.9120879120879121,
1169
+ "grad_norm": 0.31249314546585083,
1170
+ "learning_rate": 2.137352472319215e-07,
1171
+ "loss": 1.1304,
1172
+ "step": 166
1173
+ },
1174
+ {
1175
+ "epoch": 0.9175824175824175,
1176
+ "grad_norm": 0.2901577651500702,
1177
+ "learning_rate": 1.8948490078199767e-07,
1178
+ "loss": 1.2032,
1179
+ "step": 167
1180
+ },
1181
+ {
1182
+ "epoch": 0.9230769230769231,
1183
+ "grad_norm": 0.2625574767589569,
1184
+ "learning_rate": 1.666678565339025e-07,
1185
+ "loss": 1.0517,
1186
+ "step": 168
1187
+ },
1188
+ {
1189
+ "epoch": 0.9285714285714286,
1190
+ "grad_norm": 0.3036598563194275,
1191
+ "learning_rate": 1.4529091286973994e-07,
1192
+ "loss": 1.2642,
1193
+ "step": 169
1194
+ },
1195
+ {
1196
+ "epoch": 0.9340659340659341,
1197
+ "grad_norm": 0.28674596548080444,
1198
+ "learning_rate": 1.253604390908819e-07,
1199
+ "loss": 1.1196,
1200
+ "step": 170
1201
+ },
1202
+ {
1203
+ "epoch": 0.9395604395604396,
1204
+ "grad_norm": 0.28413715958595276,
1205
+ "learning_rate": 1.0688237352022346e-07,
1206
+ "loss": 1.0605,
1207
+ "step": 171
1208
+ },
1209
+ {
1210
+ "epoch": 0.945054945054945,
1211
+ "grad_norm": 0.2767190933227539,
1212
+ "learning_rate": 8.986222173284876e-08,
1213
+ "loss": 1.0639,
1214
+ "step": 172
1215
+ },
1216
+ {
1217
+ "epoch": 0.9505494505494505,
1218
+ "grad_norm": 0.31132158637046814,
1219
+ "learning_rate": 7.430505491563101e-08,
1220
+ "loss": 1.1115,
1221
+ "step": 173
1222
+ },
1223
+ {
1224
+ "epoch": 0.9560439560439561,
1225
+ "grad_norm": 0.28539252281188965,
1226
+ "learning_rate": 6.021550835626777e-08,
1227
+ "loss": 1.1568,
1228
+ "step": 174
1229
+ },
1230
+ {
1231
+ "epoch": 0.9615384615384616,
1232
+ "grad_norm": 0.29969602823257446,
1233
+ "learning_rate": 4.759778006218407e-08,
1234
+ "loss": 1.2554,
1235
+ "step": 175
1236
+ },
1237
+ {
1238
+ "epoch": 0.967032967032967,
1239
+ "grad_norm": 0.2727551758289337,
1240
+ "learning_rate": 3.645562950973014e-08,
1241
+ "loss": 1.0637,
1242
+ "step": 176
1243
+ },
1244
+ {
1245
+ "epoch": 0.9725274725274725,
1246
+ "grad_norm": 0.33564597368240356,
1247
+ "learning_rate": 2.6792376524036878e-08,
1248
+ "loss": 1.2809,
1249
+ "step": 177
1250
+ },
1251
+ {
1252
+ "epoch": 0.978021978021978,
1253
+ "grad_norm": 0.2958105206489563,
1254
+ "learning_rate": 1.8610900289867673e-08,
1255
+ "loss": 1.2498,
1256
+ "step": 178
1257
+ },
1258
+ {
1259
+ "epoch": 0.9835164835164835,
1260
+ "grad_norm": 0.2947847843170166,
1261
+ "learning_rate": 1.1913638493762369e-08,
1262
+ "loss": 1.1828,
1263
+ "step": 179
1264
+ },
1265
+ {
1266
+ "epoch": 0.989010989010989,
1267
+ "grad_norm": 0.2917383909225464,
1268
+ "learning_rate": 6.702586597719385e-09,
1269
+ "loss": 1.1621,
1270
+ "step": 180
1271
+ },
1272
+ {
1273
+ "epoch": 0.9945054945054945,
1274
+ "grad_norm": 0.30138760805130005,
1275
+ "learning_rate": 2.9792972446479605e-09,
1276
+ "loss": 1.1167,
1277
+ "step": 181
1278
+ },
1279
+ {
1280
+ "epoch": 1.0,
1281
+ "grad_norm": 0.2785519063472748,
1282
+ "learning_rate": 7.448797957526621e-10,
1283
+ "loss": 1.0354,
1284
+ "step": 182
1285
+ }
1286
+ ],
1287
+ "logging_steps": 1.0,
1288
+ "max_steps": 182,
1289
+ "num_input_tokens_seen": 0,
1290
+ "num_train_epochs": 1,
1291
+ "save_steps": 0,
1292
+ "stateful_callbacks": {
1293
+ "TrainerControl": {
1294
+ "args": {
1295
+ "should_epoch_stop": false,
1296
+ "should_evaluate": false,
1297
+ "should_log": false,
1298
+ "should_save": true,
1299
+ "should_training_stop": true
1300
+ },
1301
+ "attributes": {}
1302
+ }
1303
+ },
1304
+ "total_flos": 4.789905615172403e+16,
1305
+ "train_batch_size": 4,
1306
+ "trial_name": null,
1307
+ "trial_params": null
1308
+ }