--- license: apache-2.0 language: - en base_model: prithivMLmods/Blitzar-Coder-4B-F.1 pipeline_tag: text-generation library_name: transformers tags: - text-generation-inference - code - RL - moe - llama-cpp - gguf-my-repo datasets: - livecodebench/code_generation_lite - PrimeIntellect/verifiable-coding-problems - likaixin/TACO-verified - open-r1/codeforces-cots --- # Triangle104/Blitzar-Coder-4B-F.1-Q8_0-GGUF This model was converted to GGUF format from [`prithivMLmods/Blitzar-Coder-4B-F.1`](https://huggingface.co/prithivMLmods/Blitzar-Coder-4B-F.1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/prithivMLmods/Blitzar-Coder-4B-F.1) for more details on the model. --- Blitzar-Coder-4B-F.1 is a high-efficiency, multi-language coding model fine-tuned on Qwen3-4B using larger coding traces datasets spanning 10+ programming languages including Python, Java, C#, C++, C, Go, JavaScript, TypeScript, Rust, and more. This model delivers exceptional code generation, debugging, and reasoning capabilities—making it an ideal tool for developers seeking advanced programming assistance under constrained compute. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Blitzar-Coder-4B-F.1-Q8_0-GGUF --hf-file blitzar-coder-4b-f.1-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Blitzar-Coder-4B-F.1-Q8_0-GGUF --hf-file blitzar-coder-4b-f.1-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Blitzar-Coder-4B-F.1-Q8_0-GGUF --hf-file blitzar-coder-4b-f.1-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Blitzar-Coder-4B-F.1-Q8_0-GGUF --hf-file blitzar-coder-4b-f.1-q8_0.gguf -c 2048 ```