--- base_model: nbeerbower/Dumpling-Qwen2.5-32B-v2 datasets: - nbeerbower/GreatFirewall-DPO - nbeerbower/Schule-DPO - nbeerbower/Purpura-DPO - nbeerbower/Arkhaios-DPO - jondurbin/truthy-dpo-v0.1 - antiven0m/physical-reasoning-dpo - flammenai/Date-DPO-NoAsterisks - flammenai/Prude-Phi3-DPO - Atsunori/HelpSteer2-DPO - jondurbin/gutenberg-dpo-v0.1 - nbeerbower/gutenberg2-dpo - nbeerbower/gutenberg-moderne-dpo library_name: transformers license: apache-2.0 tags: - llama-cpp - gguf-my-repo --- # Triangle104/Dumpling-Qwen2.5-32B-v2-Q4_K_M-GGUF This model was converted to GGUF format from [`nbeerbower/Dumpling-Qwen2.5-32B-v2`](https://huggingface.co/nbeerbower/Dumpling-Qwen2.5-32B-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/nbeerbower/Dumpling-Qwen2.5-32B-v2) for more details on the model. --- [nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B](https://huggingface.co/nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B) finetuned on: * [nbeerbower/GreatFirewall-DPO](https://huggingface.co/datasets/nbeerbower/GreatFirewall-DPO) * [nbeerbower/Schule-DPO](https://huggingface.co/datasets/nbeerbower/Schule-DPO) * [nbeerbower/Purpura-DPO](https://huggingface.co/datasets/nbeerbower/Purpura-DPO) * [nbeerbower/Arkhaios-DPO](https://huggingface.co/datasets/nbeerbower/Arkhaios-DPO) * [jondurbin/truthy-dpo-v0.1](https://huggingface.co/datasets/jondurbin/truthy-dpo-v0.1) * [antiven0m/physical-reasoning-dpo](https://huggingface.co/datasets/antiven0m/physical-reasoning-dpo) * [flammenai/Date-DPO-NoAsterisks](https://huggingface.co/datasets/flammenai/Date-DPO-NoAsterisks) * [flammenai/Prude-Phi3-DPO](https://huggingface.co/datasets/flammenai/Prude-Phi3-DPO) * [Atsunori/HelpSteer2-DPO](https://huggingface.co/datasets/Atsunori/HelpSteer2-DPO) * [jondurbin/gutenberg-dpo-v0.1](https://huggingface.co/datasets/jondurbin/gutenberg-dpo-v0.1) * [nbeerbower/gutenberg2-dpo](https://huggingface.co/datasets/nbeerbower/gutenberg2-dpo) * [nbeerbower/gutenberg-moderne-dpo](https://huggingface.co/datasets/nbeerbower/gutenberg-moderne-dpo). ### Method [QLoRA ORPO tuned](https://mlabonne.github.io/blog/posts/2024-04-19_Fine_tune_Llama_3_with_ORPO.html) with 8x A100 for 2 epochs. Rank 64 LoRA, 2e-5 learning rate. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Dumpling-Qwen2.5-32B-v2-Q4_K_M-GGUF --hf-file dumpling-qwen2.5-32b-v2-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Dumpling-Qwen2.5-32B-v2-Q4_K_M-GGUF --hf-file dumpling-qwen2.5-32b-v2-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Dumpling-Qwen2.5-32B-v2-Q4_K_M-GGUF --hf-file dumpling-qwen2.5-32b-v2-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Dumpling-Qwen2.5-32B-v2-Q4_K_M-GGUF --hf-file dumpling-qwen2.5-32b-v2-q4_k_m.gguf -c 2048 ```