Triangle104 commited on
Commit
e34a74e
·
verified ·
1 Parent(s): 97c1b53

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +157 -0
README.md CHANGED
@@ -10,6 +10,163 @@ base_model: FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview
10
  This model was converted to GGUF format from [`FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview`](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
11
  Refer to the [original model card](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) for more details on the model.
12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  ## Use with llama.cpp
14
  Install llama.cpp through brew (works on Mac and Linux)
15
 
 
10
  This model was converted to GGUF format from [`FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview`](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
11
  Refer to the [original model card](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) for more details on the model.
12
 
13
+ ---
14
+ Overview
15
+ -
16
+
17
+
18
+
19
+ FuseO1-Preview
20
+ is our initial endeavor to enhance the System-II reasoning capabilities
21
+ of large language models (LLMs) through innovative model fusion
22
+ techniques. By employing our advanced SCE
23
+ merging methodologies, we integrate multiple open-source o1-like LLMs
24
+ into a unified model. Our goal is to incorporate the distinct knowledge
25
+ and strengths from different reasoning LLMs into a single, unified model
26
+ with strong System-II reasoning abilities, particularly in mathematics,
27
+ coding, and science domains.
28
+
29
+ o achieve this, we conduct two types of model merging:
30
+
31
+
32
+ Long-Long Reasoning Merging: This approach involves
33
+ model fusion across LLMs that utilize long-CoT reasoning, with the goal
34
+ of enhancing long-CoT reasoning capabilities. The resulted FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview achieves a Pass@1 accuracy of 74.0 on AIME24,
35
+ demonstrating significant performance improvements compared to the
36
+ OpenAI o1-preview (44.6) and OpenAI o1-mini (63.4), even approaching
37
+ OpenAI o1 (79.2).
38
+ Long-Short Reasoning Merging: This approach
39
+ involves model fusion between long-CoT and short-CoT LLMs, aiming to
40
+ improve reasoning capabilities in both long and short reasoning
41
+ processes. The resulted FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview and FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview
42
+ is capable of utilizing both long and short reasoning processes and
43
+ demonstrates relatively strong performance in long reasoning tasks.
44
+
45
+ Long-Long Reasoning Merging
46
+
47
+
48
+
49
+
50
+ We conduct experiments on these folloing long-cot LLMs.
51
+
52
+
53
+ deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
54
+ Qwen/QwQ-32B-Preview
55
+ NovaSky-AI/Sky-T1-32B-Preview
56
+
57
+
58
+ To reproduce the merged FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview model, using the script below.
59
+
60
+
61
+ cd FuseAI/FuseO1-Preview/mergekit
62
+ pip3 install -e .
63
+ model_save_dir=xx # your path to save the merged models
64
+ mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview --cudas
65
+
66
+
67
+
68
+ To reproduce the merged FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview model, using the script below.
69
+
70
+
71
+ cd FuseAI/FuseO1-Preview/mergekit
72
+ pip3 install -e .
73
+ model_save_dir=xxx # your path to save the merged models
74
+ mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-QwQ-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-QwQ-32B-Preview --cuda
75
+
76
+
77
+
78
+ We provide the example code to use FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview.
79
+
80
+
81
+ from vllm import LLM, SamplingParams
82
+
83
+ llm = LLM(model="FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview", tensor_parallel_size=8)
84
+ sampling_params = SamplingParams(max_tokens=32768, temperature=0.7, stop=["<|im_end|>", "<|end▁of▁sentence|>"], stop_token_ids=[151645, 151643])
85
+
86
+ conversations = [
87
+ [
88
+ {"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{{}}."},
89
+ {"role": "user", "content": "Quadratic polynomials $P(x)$ and $Q(x)$ have leading coefficients $2$ and $-2,$ respectively. The graphs of both polynomials pass through the two points $(16,54)$ and $(20,53).$ Find $P(0) + Q(0).$."},
90
+ ],
91
+ ]
92
+
93
+ responses = llm.chat(messages=conversations, sampling_params=sampling_params, use_tqdm=True)
94
+
95
+ for response in responses:
96
+ print(response.outputs[0].text.strip())
97
+
98
+
99
+
100
+
101
+
102
+
103
+
104
+
105
+ Long-Short Reasoning Merging
106
+
107
+
108
+
109
+
110
+ We conduct experiments on these folloing long-cot and short-cot LLMs.
111
+
112
+
113
+ deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
114
+ Qwen/Qwen2.5-32B-Instruct
115
+ Qwen/Qwen2.5-32B-Coder
116
+
117
+
118
+ To reproduce the merged FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview model, using the script below.
119
+
120
+
121
+ cd FuseAI/FuseO1-Preview/mergekit
122
+ pip3 install -e .
123
+ model_save_dir=xxx # your path to save the merged models
124
+ mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview --cuda
125
+
126
+
127
+
128
+ To reproduce the merged FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview model, using the script below.
129
+
130
+
131
+ cd FuseAI/FuseO1-Preview/mergekit
132
+ pip3 install -e .
133
+ model_save_dir=xxx # your path to save the merged models
134
+ mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview --cuda
135
+
136
+
137
+
138
+ To reproduce the merged FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview model, using the script below.
139
+
140
+
141
+ cd FuseAI/FuseO1-Preview/mergekit
142
+ pip3 install -e .
143
+ model_save_dir=xxx # your path to save the merged models
144
+ mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview --cuda
145
+
146
+
147
+
148
+ We provide the code to use FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview.
149
+
150
+
151
+ from vllm import LLM, SamplingParams
152
+
153
+ llm = LLM(model="FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview", tensor_parallel_size=8)
154
+ sampling_params = SamplingParams(max_tokens=32768, temperature=0.7, stop=["<|im_end|>", "<|end▁of▁sentence|>"], stop_token_ids=[151645, 151643])
155
+
156
+ conversations = [
157
+ [
158
+ {"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{{}}."},
159
+ {"role": "user", "content": "Quadratic polynomials $P(x)$ and $Q(x)$ have leading coefficients $2$ and $-2,$ respectively. The graphs of both polynomials pass through the two points $(16,54)$ and $(20,53).$ Find $P(0) + Q(0).$."},
160
+ ],
161
+ ]
162
+
163
+ responses = llm.chat(messages=conversations, sampling_params=sampling_params, use_tqdm=True)
164
+
165
+ for response in responses:
166
+ print(response.outputs[0].text.strip())
167
+
168
+ ---
169
+
170
  ## Use with llama.cpp
171
  Install llama.cpp through brew (works on Mac and Linux)
172