Triangle104
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -112,6 +112,125 @@ model-index:
|
|
112 |
This model was converted to GGUF format from [`HumanLLMs/Human-Like-Qwen2.5-7B-Instruct`](https://huggingface.co/HumanLLMs/Human-Like-Qwen2.5-7B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
113 |
Refer to the [original model card](https://huggingface.co/HumanLLMs/Human-Like-Qwen2.5-7B-Instruct) for more details on the model.
|
114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
## Use with llama.cpp
|
116 |
Install llama.cpp through brew (works on Mac and Linux)
|
117 |
|
|
|
112 |
This model was converted to GGUF format from [`HumanLLMs/Human-Like-Qwen2.5-7B-Instruct`](https://huggingface.co/HumanLLMs/Human-Like-Qwen2.5-7B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
113 |
Refer to the [original model card](https://huggingface.co/HumanLLMs/Human-Like-Qwen2.5-7B-Instruct) for more details on the model.
|
114 |
|
115 |
+
---
|
116 |
+
Model details:
|
117 |
+
-
|
118 |
+
This model is a fine-tuned version of Qwen/Qwen2.5-7B-Instruct, specifically optimized to generate more human-like and conversational responses.
|
119 |
+
|
120 |
+
The fine-tuning process employed both Low-Rank Adaptation (LoRA) and Direct Preference Optimization (DPO) to enhance natural language understanding, conversational coherence, and emotional intelligence in interactions.
|
121 |
+
|
122 |
+
The proccess of creating this models is detailed in the research paper “Enhancing Human-Like Responses in Large Language Models”.
|
123 |
+
🛠️ Training Configuration
|
124 |
+
|
125 |
+
Base Model: Qwen2.5-7B-Instruct
|
126 |
+
Framework: Axolotl v0.4.1
|
127 |
+
Hardware: 2x NVIDIA A100 (80 GB) GPUs
|
128 |
+
Training Time: ~2 hours 15 minutes
|
129 |
+
Dataset: Synthetic dataset with ≈11,000 samples across 256 diverse topics
|
130 |
+
|
131 |
+
See axolotl config
|
132 |
+
|
133 |
+
axolotl version: 0.4.1
|
134 |
+
|
135 |
+
base_model: Qwen/Qwen2.5-7B-Instruct
|
136 |
+
model_type: AutoModalForCausalLM
|
137 |
+
tokenizer_type: AutoTokenizer
|
138 |
+
|
139 |
+
trust_remote_code: true
|
140 |
+
|
141 |
+
load_in_8bit: true
|
142 |
+
load_in_4bit: false
|
143 |
+
strict: false
|
144 |
+
|
145 |
+
chat_template: chatml
|
146 |
+
rl: dpo
|
147 |
+
datasets:
|
148 |
+
- path: HumanLLMs/humanish-dpo-project
|
149 |
+
type: chatml.prompt_pairs
|
150 |
+
chat_template: chatml
|
151 |
+
|
152 |
+
dataset_prepared_path:
|
153 |
+
val_set_size: 0.05
|
154 |
+
output_dir: ./humanish-qwen2.5-7b-instruct
|
155 |
+
|
156 |
+
sequence_len: 8192
|
157 |
+
sample_packing: false
|
158 |
+
pad_to_sequence_len: true
|
159 |
+
|
160 |
+
adapter: lora
|
161 |
+
lora_model_dir:
|
162 |
+
lora_r: 8
|
163 |
+
lora_alpha: 4
|
164 |
+
lora_dropout: 0.05
|
165 |
+
lora_target_linear: true
|
166 |
+
lora_fan_in_fan_out:
|
167 |
+
|
168 |
+
wandb_project: Humanish-DPO
|
169 |
+
wandb_entity:
|
170 |
+
wandb_watch:
|
171 |
+
wandb_name:
|
172 |
+
wandb_log_model:
|
173 |
+
|
174 |
+
hub_model_id: HumanLLMs/Humanish-Qwen2.5-7B-Instruct
|
175 |
+
|
176 |
+
gradient_accumulation_steps: 8
|
177 |
+
micro_batch_size: 2
|
178 |
+
num_epochs: 1
|
179 |
+
optimizer: adamw_bnb_8bit
|
180 |
+
lr_scheduler: cosine
|
181 |
+
learning_rate: 0.0002
|
182 |
+
|
183 |
+
train_on_inputs: false
|
184 |
+
group_by_length: false
|
185 |
+
bf16: auto
|
186 |
+
fp16:
|
187 |
+
tf32: false
|
188 |
+
|
189 |
+
gradient_checkpointing: true
|
190 |
+
early_stopping_patience:
|
191 |
+
resume_from_checkpoint:
|
192 |
+
local_rank:
|
193 |
+
logging_steps: 1
|
194 |
+
xformers_attention:
|
195 |
+
flash_attention: true
|
196 |
+
s2_attention:
|
197 |
+
|
198 |
+
warmup_steps: 10
|
199 |
+
evals_per_epoch: 2
|
200 |
+
eval_table_size:
|
201 |
+
eval_max_new_tokens: 128
|
202 |
+
saves_per_epoch: 1
|
203 |
+
debug:
|
204 |
+
deepspeed:
|
205 |
+
weight_decay: 0.0
|
206 |
+
fsdp:
|
207 |
+
fsdp_config:
|
208 |
+
|
209 |
+
save_safetensors: true
|
210 |
+
|
211 |
+
|
212 |
+
💬 Prompt Template
|
213 |
+
|
214 |
+
You can use ChatML prompt template while using the model:
|
215 |
+
ChatML
|
216 |
+
|
217 |
+
<|im_start|>system
|
218 |
+
{system}<|im_end|>
|
219 |
+
<|im_start|>user
|
220 |
+
{user}<|im_end|>
|
221 |
+
<|im_start|>assistant
|
222 |
+
{asistant}<|im_end|>
|
223 |
+
|
224 |
+
This prompt template is available as a chat template, which means you can format messages using the tokenizer.apply_chat_template() method:
|
225 |
+
|
226 |
+
messages = [
|
227 |
+
{"role": "system", "content": "You are helpful AI asistant."},
|
228 |
+
{"role": "user", "content": "Hello!"}
|
229 |
+
]
|
230 |
+
gen_input = tokenizer.apply_chat_template(message, return_tensors="pt")
|
231 |
+
model.generate(**gen_input)
|
232 |
+
|
233 |
+
---
|
234 |
## Use with llama.cpp
|
235 |
Install llama.cpp through brew (works on Mac and Linux)
|
236 |
|