Triangle104 commited on
Commit
234d727
·
verified ·
1 Parent(s): e09a7b4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +119 -0
README.md CHANGED
@@ -112,6 +112,125 @@ model-index:
112
  This model was converted to GGUF format from [`HumanLLMs/Human-Like-Qwen2.5-7B-Instruct`](https://huggingface.co/HumanLLMs/Human-Like-Qwen2.5-7B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
113
  Refer to the [original model card](https://huggingface.co/HumanLLMs/Human-Like-Qwen2.5-7B-Instruct) for more details on the model.
114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115
  ## Use with llama.cpp
116
  Install llama.cpp through brew (works on Mac and Linux)
117
 
 
112
  This model was converted to GGUF format from [`HumanLLMs/Human-Like-Qwen2.5-7B-Instruct`](https://huggingface.co/HumanLLMs/Human-Like-Qwen2.5-7B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
113
  Refer to the [original model card](https://huggingface.co/HumanLLMs/Human-Like-Qwen2.5-7B-Instruct) for more details on the model.
114
 
115
+ ---
116
+ Model details:
117
+ -
118
+ This model is a fine-tuned version of Qwen/Qwen2.5-7B-Instruct, specifically optimized to generate more human-like and conversational responses.
119
+
120
+ The fine-tuning process employed both Low-Rank Adaptation (LoRA) and Direct Preference Optimization (DPO) to enhance natural language understanding, conversational coherence, and emotional intelligence in interactions.
121
+
122
+ The proccess of creating this models is detailed in the research paper “Enhancing Human-Like Responses in Large Language Models”.
123
+ 🛠️ Training Configuration
124
+
125
+ Base Model: Qwen2.5-7B-Instruct
126
+ Framework: Axolotl v0.4.1
127
+ Hardware: 2x NVIDIA A100 (80 GB) GPUs
128
+ Training Time: ~2 hours 15 minutes
129
+ Dataset: Synthetic dataset with ≈11,000 samples across 256 diverse topics
130
+
131
+ See axolotl config
132
+
133
+ axolotl version: 0.4.1
134
+
135
+ base_model: Qwen/Qwen2.5-7B-Instruct
136
+ model_type: AutoModalForCausalLM
137
+ tokenizer_type: AutoTokenizer
138
+
139
+ trust_remote_code: true
140
+
141
+ load_in_8bit: true
142
+ load_in_4bit: false
143
+ strict: false
144
+
145
+ chat_template: chatml
146
+ rl: dpo
147
+ datasets:
148
+ - path: HumanLLMs/humanish-dpo-project
149
+ type: chatml.prompt_pairs
150
+ chat_template: chatml
151
+
152
+ dataset_prepared_path:
153
+ val_set_size: 0.05
154
+ output_dir: ./humanish-qwen2.5-7b-instruct
155
+
156
+ sequence_len: 8192
157
+ sample_packing: false
158
+ pad_to_sequence_len: true
159
+
160
+ adapter: lora
161
+ lora_model_dir:
162
+ lora_r: 8
163
+ lora_alpha: 4
164
+ lora_dropout: 0.05
165
+ lora_target_linear: true
166
+ lora_fan_in_fan_out:
167
+
168
+ wandb_project: Humanish-DPO
169
+ wandb_entity:
170
+ wandb_watch:
171
+ wandb_name:
172
+ wandb_log_model:
173
+
174
+ hub_model_id: HumanLLMs/Humanish-Qwen2.5-7B-Instruct
175
+
176
+ gradient_accumulation_steps: 8
177
+ micro_batch_size: 2
178
+ num_epochs: 1
179
+ optimizer: adamw_bnb_8bit
180
+ lr_scheduler: cosine
181
+ learning_rate: 0.0002
182
+
183
+ train_on_inputs: false
184
+ group_by_length: false
185
+ bf16: auto
186
+ fp16:
187
+ tf32: false
188
+
189
+ gradient_checkpointing: true
190
+ early_stopping_patience:
191
+ resume_from_checkpoint:
192
+ local_rank:
193
+ logging_steps: 1
194
+ xformers_attention:
195
+ flash_attention: true
196
+ s2_attention:
197
+
198
+ warmup_steps: 10
199
+ evals_per_epoch: 2
200
+ eval_table_size:
201
+ eval_max_new_tokens: 128
202
+ saves_per_epoch: 1
203
+ debug:
204
+ deepspeed:
205
+ weight_decay: 0.0
206
+ fsdp:
207
+ fsdp_config:
208
+
209
+ save_safetensors: true
210
+
211
+
212
+ 💬 Prompt Template
213
+
214
+ You can use ChatML prompt template while using the model:
215
+ ChatML
216
+
217
+ <|im_start|>system
218
+ {system}<|im_end|>
219
+ <|im_start|>user
220
+ {user}<|im_end|>
221
+ <|im_start|>assistant
222
+ {asistant}<|im_end|>
223
+
224
+ This prompt template is available as a chat template, which means you can format messages using the tokenizer.apply_chat_template() method:
225
+
226
+ messages = [
227
+ {"role": "system", "content": "You are helpful AI asistant."},
228
+ {"role": "user", "content": "Hello!"}
229
+ ]
230
+ gen_input = tokenizer.apply_chat_template(message, return_tensors="pt")
231
+ model.generate(**gen_input)
232
+
233
+ ---
234
  ## Use with llama.cpp
235
  Install llama.cpp through brew (works on Mac and Linux)
236