--- library_name: transformers tags: - reasoning - thinking - cognitivecomputations - r1 - llama 3.1 - llama-3 - llama3 - llama-3.1 - cot - deepseek - Llama 3.1 - Hermes - DeepHermes - 1,000,000 context - fine tune - merge - llama-cpp - gguf-my-repo base_model: DavidAU/Llama-3.1-1-million-ctx-DeepHermes-Deep-Reasoning-8B --- # Triangle104/Llama-3.1-1-million-ctx-DeepHermes-Deep-Reasoning-8B-Q5_K_M-GGUF This model was converted to GGUF format from [`DavidAU/Llama-3.1-1-million-ctx-DeepHermes-Deep-Reasoning-8B`](https://huggingface.co/DavidAU/Llama-3.1-1-million-ctx-DeepHermes-Deep-Reasoning-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/DavidAU/Llama-3.1-1-million-ctx-DeepHermes-Deep-Reasoning-8B) for more details on the model. --- Context : 1,000,000 tokens. Required: Llama 3 Instruct template. The Deep Hermes 8B Preview model (reasoning), [ https://huggingface.co/NousResearch/DeepHermes-3-Llama-3-8B-Preview ] converted to 1 million context using Nvidia's Ultra Long 1 million 8B Instruct model. The goal of this model was to stablize long generation and long context "needle in a haystack" issues. According to Nvidia there is both a bump in general performance, as well as perfect "recall" over the entire 1 million context. [ https://huggingface.co/nvidia/Llama-3.1-8B-UltraLong-1M-Instruct ] Additional changes: Model appears to be de-censored / more de-censored. Output generation is improved. Creative output generation is vastly improved. NOTE: Higher temps will result in deeper, richer "thoughts"... and frankly more interesting ones too. The "thinking/reasoning" tech (for the model at this repo) is from the original Llama 3.1 "DeepHermes" model from NousResearch: [ https://huggingface.co/NousResearch/DeepHermes-3-Llama-3-8B-Preview ] --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Llama-3.1-1-million-ctx-DeepHermes-Deep-Reasoning-8B-Q5_K_M-GGUF --hf-file llama-3.1-1-million-ctx-deephermes-deep-reasoning-8b-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Llama-3.1-1-million-ctx-DeepHermes-Deep-Reasoning-8B-Q5_K_M-GGUF --hf-file llama-3.1-1-million-ctx-deephermes-deep-reasoning-8b-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Llama-3.1-1-million-ctx-DeepHermes-Deep-Reasoning-8B-Q5_K_M-GGUF --hf-file llama-3.1-1-million-ctx-deephermes-deep-reasoning-8b-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Llama-3.1-1-million-ctx-DeepHermes-Deep-Reasoning-8B-Q5_K_M-GGUF --hf-file llama-3.1-1-million-ctx-deephermes-deep-reasoning-8b-q5_k_m.gguf -c 2048 ```