File size: 4,365 Bytes
0a0e51b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437772b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a0e51b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
base_model: mistralai/Mistral-Small-3.1-24B-Instruct-2503
language:
- en
- fr
- de
- es
- pt
- it
- ja
- ko
- ru
- zh
- ar
- fa
- id
- ms
- ne
- pl
- ro
- sr
- sv
- tr
- uk
- vi
- hi
- bn
library_name: vllm
license: apache-2.0
pipeline_tag: image-text-to-text
tags:
- llama-cpp
- gguf-my-repo
inference: false
extra_gated_description: If you want to learn more about how we process your personal
  data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
---

# Triangle104/Mistral-Small-3.1-24B-Instruct-2503-Q5_K_M-GGUF
This model was converted to GGUF format from [`mistralai/Mistral-Small-3.1-24B-Instruct-2503`](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503) for more details on the model.

---
Building upon Mistral Small 3 (2501), Mistral Small 3.1 (2503) adds state-of-the-art vision understanding and enhances long context capabilities up to 128k tokens without compromising text performance. 
With 24 billion parameters, this model achieves top-tier capabilities in both text and vision tasks.
This model is an instruction-finetuned version of: Mistral-Small-3.1-24B-Base-2503.

Mistral Small 3.1 can be deployed locally and is exceptionally 
"knowledge-dense," fitting within a single RTX 4090 or a 32GB RAM 
MacBook once quantized.  

It is ideal for:

-Fast-response conversational agents.

-Low-latency function calling.

-Subject matter experts via fine-tuning.

-Local inference for hobbyists and organizations handling sensitive data.

-Programming and math reasoning.

-Long document understanding.

-Visual understanding.

For enterprises requiring specialized capabilities (increased 
context, specific modalities, domain-specific knowledge, etc.), we will 
release commercial models beyond what Mistral AI contributes to the 
community.

Key Features
-
-Vision: Vision capabilities enable the model to analyze images and provide insights based on visual content in addition to text.

-Multilingual: Supports dozens of languages,including English, French, German, Greek, Hindi, Indonesian, Italian, Japanese, Korean, Malay, Nepali, Polish, Portuguese, Romanian, Russian, Serbian, Spanish, Swedish, Turkish, Ukrainian, Vietnamese, Arabic, Bengali, Chinese, Farsi.

-Agent-Centric: Offers best-in-class agentic capabilities with native function calling and JSON outputting.

-Advanced Reasoning: State-of-the-art conversational and reasoning capabilities.

-Apache 2.0 License: Open license allowing usage and modification for both commercial and non-commercial purposes.

-Context Window: A 128k context window.

-System Prompt: Maintains strong adherence and support for system prompts.

-Tokenizer: Utilizes a Tekken tokenizer with a 131k vocabulary size.

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/Mistral-Small-3.1-24B-Instruct-2503-Q5_K_M-GGUF --hf-file mistral-small-3.1-24b-instruct-2503-q5_k_m.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/Mistral-Small-3.1-24B-Instruct-2503-Q5_K_M-GGUF --hf-file mistral-small-3.1-24b-instruct-2503-q5_k_m.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Mistral-Small-3.1-24B-Instruct-2503-Q5_K_M-GGUF --hf-file mistral-small-3.1-24b-instruct-2503-q5_k_m.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/Mistral-Small-3.1-24B-Instruct-2503-Q5_K_M-GGUF --hf-file mistral-small-3.1-24b-instruct-2503-q5_k_m.gguf -c 2048
```