--- language: - en - fr - de - es - pt - it - ja - ko - ru - zh - ar - fa - id - ms - ne - pl - ro - sr - sv - tr - uk - vi - hi - bn license: apache-2.0 library_name: vllm inference: false base_model: unsloth/Mistral-Small-3.2-24B-Instruct-2506 pipeline_tag: image-text-to-text tags: - llama-cpp - gguf-my-repo --- # Triangle104/Mistral-Small-3.2-24B-Instruct-2506-Q6_K-GGUF This model was converted to GGUF format from [`unsloth/Mistral-Small-3.2-24B-Instruct-2506`](https://huggingface.co/unsloth/Mistral-Small-3.2-24B-Instruct-2506) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/unsloth/Mistral-Small-3.2-24B-Instruct-2506) for more details on the model. --- Mistral-Small-3.2-24B-Instruct-2506 is a minor update of Mistral-Small-3.1-24B-Instruct-2503. Small-3.2 improves in the following categories: - Instruction following: Small-3.2 is better at following precise instructions - Repetition errors: Small-3.2 produces less infinite generations or repetitive answers - Function calling: Small-3.2's function calling template is more robust (see here and examples) In all other categories Small-3.2 should match or slightly improve compared to Mistral-Small-3.1-24B-Instruct-2503. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Mistral-Small-3.2-24B-Instruct-2506-Q6_K-GGUF --hf-file mistral-small-3.2-24b-instruct-2506-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Mistral-Small-3.2-24B-Instruct-2506-Q6_K-GGUF --hf-file mistral-small-3.2-24b-instruct-2506-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Mistral-Small-3.2-24B-Instruct-2506-Q6_K-GGUF --hf-file mistral-small-3.2-24b-instruct-2506-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Mistral-Small-3.2-24B-Instruct-2506-Q6_K-GGUF --hf-file mistral-small-3.2-24b-instruct-2506-q6_k.gguf -c 2048 ```