Upload folder using huggingface_hub
Browse files- text-encoder/config.json +31 -0
- text-encoder/model.safetensors +3 -0
- text-encoder/utils.py +332 -0
- utils.py +332 -0
- vision-encoder/config.json +16 -0
- vision-encoder/model.safetensors +3 -0
- vision-encoder/utils.py +332 -0
text-encoder/config.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"CLIPTextEncoderOnly"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "utils.CLIPTextEncoderOnlyConfig",
|
| 8 |
+
"AutoModel": "utils.CLIPTextEncoderOnly"
|
| 9 |
+
},
|
| 10 |
+
"bos_token_id": 49406,
|
| 11 |
+
"eos_token_id": 49407,
|
| 12 |
+
"frozen": false,
|
| 13 |
+
"hidden_act": "quick_gelu",
|
| 14 |
+
"hidden_size": 512,
|
| 15 |
+
"initializer_factor": 1.0,
|
| 16 |
+
"initializer_range": 0.02,
|
| 17 |
+
"intermediate_size": 2048,
|
| 18 |
+
"layer_norm_eps": 1e-05,
|
| 19 |
+
"lora": null,
|
| 20 |
+
"max_position_embeddings": 77,
|
| 21 |
+
"model_name": "openai/clip-vit-base-patch32",
|
| 22 |
+
"model_type": "clip_custom_text_model",
|
| 23 |
+
"num_attention_heads": 8,
|
| 24 |
+
"num_hidden_layers": 12,
|
| 25 |
+
"pad_token_id": 1,
|
| 26 |
+
"pretrained": false,
|
| 27 |
+
"projection_dim": 512,
|
| 28 |
+
"torch_dtype": "float32",
|
| 29 |
+
"transformers_version": "4.40.1",
|
| 30 |
+
"vocab_size": 49408
|
| 31 |
+
}
|
text-encoder/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:560e169fa2b2aae50f7b22ddb7aeccea7035e2d0230af5a897db364dbd8fa7f3
|
| 3 |
+
size 253736912
|
text-encoder/utils.py
ADDED
|
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoConfig, AutoModel, PretrainedConfig, CLIPTextConfig, CLIPVisionConfig, PreTrainedModel, CLIPTextModelWithProjection, CLIPVisionModelWithProjection
|
| 2 |
+
from transformers.utils import ModelOutput
|
| 3 |
+
import torch
|
| 4 |
+
import open_clip
|
| 5 |
+
from dataclasses import dataclass
|
| 6 |
+
import safetensors.torch
|
| 7 |
+
from peft import get_peft_config, get_peft_model, LoraConfig, TaskType
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
HF_SAFE_WEIGHTS_NAME = "open_clip_model.safetensors"
|
| 11 |
+
HF_SAFE_WEIGHTS_NAME_PRIOR = "prior_model.safetensors"
|
| 12 |
+
|
| 13 |
+
@dataclass
|
| 14 |
+
class PriorTransformerOutput(ModelOutput):
|
| 15 |
+
"""
|
| 16 |
+
The output of [`PriorTransformer`].
|
| 17 |
+
|
| 18 |
+
Args:
|
| 19 |
+
predicted_image_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`):
|
| 20 |
+
The predicted CLIP image embedding conditioned on the CLIP text embedding input.
|
| 21 |
+
"""
|
| 22 |
+
|
| 23 |
+
predicted_image_embedding: torch.FloatTensor
|
| 24 |
+
|
| 25 |
+
@dataclass
|
| 26 |
+
class TextEncoderOutput(ModelOutput):
|
| 27 |
+
"""
|
| 28 |
+
Output class for CLIPTextEncoderOnly model to store the outputs in a Hugging Face transformer style.
|
| 29 |
+
|
| 30 |
+
Attributes:
|
| 31 |
+
prompt_embeds (torch.Tensor): The embeddings of the input prompts.
|
| 32 |
+
last_hidden_states (torch.Tensor): The last hidden states from the model.
|
| 33 |
+
"""
|
| 34 |
+
text_embeds: torch.FloatTensor = None
|
| 35 |
+
last_hidden_state: torch.FloatTensor = None
|
| 36 |
+
|
| 37 |
+
class CLIPTextEncoderOnlyConfig(CLIPTextConfig):
|
| 38 |
+
model_type = "clip_custom_text_model"
|
| 39 |
+
|
| 40 |
+
def __init__(self, model_name: str = None, pretrained: bool = True, frozen: bool = False, lora: dict = None, **kwargs):
|
| 41 |
+
self.model_name = model_name
|
| 42 |
+
self.pretrained = pretrained
|
| 43 |
+
self.frozen = frozen
|
| 44 |
+
self.lora = lora
|
| 45 |
+
super().__init__(**kwargs)
|
| 46 |
+
|
| 47 |
+
class CLIPTextEncoderOnly(PreTrainedModel):
|
| 48 |
+
config_class = CLIPTextEncoderOnlyConfig
|
| 49 |
+
|
| 50 |
+
def __init__(self, config):
|
| 51 |
+
"""
|
| 52 |
+
Initializes the Hugging Face text encoder for CLIP model, inheriting from PreTrainedModel.
|
| 53 |
+
|
| 54 |
+
:param model_name: The name or path of the pretrained model.
|
| 55 |
+
:param pretrained: Whether to load the pretrained weights.
|
| 56 |
+
"""
|
| 57 |
+
super().__init__(config)
|
| 58 |
+
|
| 59 |
+
if config.pretrained:
|
| 60 |
+
self.model = CLIPTextModelWithProjection.from_pretrained(config.model_name)
|
| 61 |
+
else:
|
| 62 |
+
base_cfg = CLIPTextConfig.from_pretrained(config.model_name)
|
| 63 |
+
self.model = CLIPTextModelWithProjection(base_cfg)
|
| 64 |
+
|
| 65 |
+
if config.lora:
|
| 66 |
+
l_config = LoraConfig(
|
| 67 |
+
r=config.lora.lora_r,
|
| 68 |
+
lora_alpha=config.lora.lora_alpha,
|
| 69 |
+
target_modules=[
|
| 70 |
+
"k_proj",
|
| 71 |
+
"v_proj",
|
| 72 |
+
"q_proj",
|
| 73 |
+
"out_proj",
|
| 74 |
+
"fc1",
|
| 75 |
+
"fc2",
|
| 76 |
+
"visual_projection",
|
| 77 |
+
"text_projection"
|
| 78 |
+
],
|
| 79 |
+
lora_dropout=config.lora.lora_dropout,
|
| 80 |
+
bias="lora_only",
|
| 81 |
+
)
|
| 82 |
+
self.model = get_peft_model(self.model, l_config)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def forward(self, input_ids, attention_mask=None, position_ids=None):
|
| 86 |
+
"""
|
| 87 |
+
Forward pass of the model.
|
| 88 |
+
|
| 89 |
+
:param input_ids: Indices of input sequence tokens in the vocabulary.
|
| 90 |
+
:param attention_mask: Mask to avoid performing attention on padding token indices.
|
| 91 |
+
:param token_type_ids: Segment token indices to indicate first and second portions of the inputs.
|
| 92 |
+
:return: Outputs of the model.
|
| 93 |
+
"""
|
| 94 |
+
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_hidden_states=True)
|
| 95 |
+
return TextEncoderOutput(text_embeds=outputs.text_embeds, last_hidden_state=outputs.last_hidden_state)
|
| 96 |
+
|
| 97 |
+
class CustomTextEncoderOnly(PreTrainedModel):
|
| 98 |
+
def __init__(self, model_name: str, output_hidden_size: int, pretrained: bool = True, frozen: bool = True, last_hidden_state: bool = False, lora: dict = None):
|
| 99 |
+
"""
|
| 100 |
+
Initializes the Hugging Face text encoder for CLIP model, inheriting from PreTrainedModel.
|
| 101 |
+
|
| 102 |
+
:param model_name: The name or path of the pretrained model.
|
| 103 |
+
:param pretrained: Whether to load the pretrained weights.
|
| 104 |
+
"""
|
| 105 |
+
config = AutoModel.from_pretrained(model_name).config
|
| 106 |
+
super().__init__(config)
|
| 107 |
+
self.last_hidden_state = last_hidden_state
|
| 108 |
+
|
| 109 |
+
if pretrained:
|
| 110 |
+
self.model = AutoModel.from_pretrained(model_name)
|
| 111 |
+
if frozen:
|
| 112 |
+
for param in self.model.parameters():
|
| 113 |
+
param.requires_grad = False
|
| 114 |
+
else:
|
| 115 |
+
self.model = AutoModel(config)
|
| 116 |
+
|
| 117 |
+
self.fc1 = torch.nn.Linear(self.model.config.hidden_size, output_hidden_size)
|
| 118 |
+
if last_hidden_state:
|
| 119 |
+
self.fc2 = torch.nn.Linear(self.model.config.hidden_size, output_hidden_size)
|
| 120 |
+
|
| 121 |
+
if lora:
|
| 122 |
+
l_config = LoraConfig(
|
| 123 |
+
task_type=TaskType.FEATURE_EXTRACTION,
|
| 124 |
+
r=lora.lora_r,
|
| 125 |
+
lora_alpha=lora.lora_alpha,
|
| 126 |
+
lora_dropout=lora.lora_dropout,
|
| 127 |
+
bias="lora_only",
|
| 128 |
+
)
|
| 129 |
+
self.model = get_peft_model(self.model, l_config)
|
| 130 |
+
|
| 131 |
+
def forward(self, input_ids, attention_mask=None, token_type_ids=None):
|
| 132 |
+
"""
|
| 133 |
+
Forward pass of the model.
|
| 134 |
+
|
| 135 |
+
:param input_ids: Indices of input sequence tokens in the vocabulary.
|
| 136 |
+
:param attention_mask: Mask to avoid performing attention on padding token indices.
|
| 137 |
+
:param token_type_ids: Segment token indices to indicate first and second portions of the inputs.
|
| 138 |
+
:return: Outputs of the model.
|
| 139 |
+
"""
|
| 140 |
+
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, output_hidden_states=True)
|
| 141 |
+
text_embeds = self.fc1(outputs[1])
|
| 142 |
+
last_hidden_state = None
|
| 143 |
+
if self.last_hidden_state:
|
| 144 |
+
last_hidden_state = self.fc2(outputs[0])
|
| 145 |
+
else:
|
| 146 |
+
last_hidden_state = outputs[0]
|
| 147 |
+
return TextEncoderOutput(text_embeds=text_embeds, last_hidden_state=last_hidden_state)
|
| 148 |
+
|
| 149 |
+
class CLIPVisionEncoderOnlyConfig(PretrainedConfig):
|
| 150 |
+
model_type = "clip_custom_vision_model"
|
| 151 |
+
|
| 152 |
+
def __init__(self, model_name: str = None, pretrained: bool = True, frozen: bool = False, lora: dict = None, **kwargs):
|
| 153 |
+
self.model_name = model_name
|
| 154 |
+
self.pretrained = pretrained
|
| 155 |
+
self.frozen = frozen
|
| 156 |
+
self.lora = lora
|
| 157 |
+
super().__init__(**kwargs)
|
| 158 |
+
|
| 159 |
+
class CLIPVisionEncoderOnly(PreTrainedModel):
|
| 160 |
+
config_class = CLIPVisionEncoderOnlyConfig
|
| 161 |
+
|
| 162 |
+
def __init__(self, config):
|
| 163 |
+
"""
|
| 164 |
+
Initializes the Hugging Face text encoder for CLIP model, inheriting from PreTrainedModel.
|
| 165 |
+
|
| 166 |
+
:param model_name: The name or path of the pretrained model.
|
| 167 |
+
:param pretrained: Whether to load the pretrained weights.
|
| 168 |
+
"""
|
| 169 |
+
super().__init__(config)
|
| 170 |
+
|
| 171 |
+
if config.pretrained:
|
| 172 |
+
self.model = CLIPVisionModelWithProjection.from_pretrained(config.model_name)
|
| 173 |
+
else:
|
| 174 |
+
base_cfg = CLIPVisionConfig.from_pretrained(config.model_name)
|
| 175 |
+
self.model = CLIPVisionModelWithProjection(base_cfg)
|
| 176 |
+
|
| 177 |
+
if config.lora:
|
| 178 |
+
l_config = LoraConfig(
|
| 179 |
+
r=config.lora.lora_r,
|
| 180 |
+
lora_alpha=config.lora.lora_alpha,
|
| 181 |
+
target_modules=[
|
| 182 |
+
"k_proj",
|
| 183 |
+
"v_proj",
|
| 184 |
+
"q_proj",
|
| 185 |
+
"out_proj",
|
| 186 |
+
"fc1",
|
| 187 |
+
"fc2",
|
| 188 |
+
"visual_projection",
|
| 189 |
+
"text_projection"
|
| 190 |
+
],
|
| 191 |
+
lora_dropout=config.lora.lora_dropout,
|
| 192 |
+
bias="lora_only",
|
| 193 |
+
)
|
| 194 |
+
self.model = get_peft_model(self.model, l_config)
|
| 195 |
+
|
| 196 |
+
def forward(self, data):
|
| 197 |
+
"""
|
| 198 |
+
Forward pass of the model.
|
| 199 |
+
"""
|
| 200 |
+
return self.model(**data).image_embeds
|
| 201 |
+
|
| 202 |
+
def parameters(self):
|
| 203 |
+
return self.model.parameters()
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
class OpenCLIPVisionEncoderOnly(torch.nn.Module):
|
| 207 |
+
def __init__(self, model_name: str, pretrained: bool = True, frozen: bool = False, lora: dict = None):
|
| 208 |
+
"""
|
| 209 |
+
Initializes the Hugging Face text encoder for CLIP model, inheriting from PreTrainedModel.
|
| 210 |
+
|
| 211 |
+
:param model_name: The name or path of the pretrained model.
|
| 212 |
+
:param pretrained: Whether to load the pretrained weights.
|
| 213 |
+
"""
|
| 214 |
+
super().__init__()
|
| 215 |
+
if pretrained:
|
| 216 |
+
model, _ = open_clip.create_model_from_pretrained(f"hf-hub:{model_name}")
|
| 217 |
+
model = model.visual
|
| 218 |
+
else:
|
| 219 |
+
raise NotImplemented
|
| 220 |
+
self.model = model
|
| 221 |
+
|
| 222 |
+
if lora:
|
| 223 |
+
l_config = LoraConfig(
|
| 224 |
+
r=lora.lora_r,
|
| 225 |
+
lora_alpha=lora.lora_alpha,
|
| 226 |
+
target_modules=[
|
| 227 |
+
"k_proj",
|
| 228 |
+
"v_proj",
|
| 229 |
+
"q_proj",
|
| 230 |
+
"out_proj",
|
| 231 |
+
"fc1",
|
| 232 |
+
"fc2",
|
| 233 |
+
"visual_projection",
|
| 234 |
+
"text_projection"
|
| 235 |
+
],
|
| 236 |
+
lora_dropout=lora.lora_dropout,
|
| 237 |
+
bias="lora_only",
|
| 238 |
+
)
|
| 239 |
+
self.model = get_peft_model(self.model, l_config)
|
| 240 |
+
|
| 241 |
+
def forward(self, image):
|
| 242 |
+
"""
|
| 243 |
+
Forward pass of the model.
|
| 244 |
+
"""
|
| 245 |
+
return self.model(image)
|
| 246 |
+
|
| 247 |
+
def save_pretrained(self, save_dir):
|
| 248 |
+
tensors = self.model.state_dict()
|
| 249 |
+
safetensors.torch.save_file(tensors, save_dir / HF_SAFE_WEIGHTS_NAME)
|
| 250 |
+
|
| 251 |
+
class CustomPriorModel(torch.nn.Module):
|
| 252 |
+
def __init__(self, in_hidden_state, out_hidden_state):
|
| 253 |
+
"""
|
| 254 |
+
Initializes the Hugging Face text encoder for CLIP model, inheriting from PreTrainedModel.
|
| 255 |
+
|
| 256 |
+
:param model_name: The name or path of the pretrained model.
|
| 257 |
+
:param pretrained: Whether to load the pretrained weights.
|
| 258 |
+
"""
|
| 259 |
+
super().__init__()
|
| 260 |
+
mid_hidden_state = max(in_hidden_state, out_hidden_state)
|
| 261 |
+
|
| 262 |
+
self.fc1 = torch.nn.Linear(in_hidden_state*2, mid_hidden_state)
|
| 263 |
+
self.relu = torch.nn.ReLU()
|
| 264 |
+
self.fc2 = torch.nn.Linear(mid_hidden_state, out_hidden_state)
|
| 265 |
+
|
| 266 |
+
def reinitialize_model(self):
|
| 267 |
+
for name, param in self.named_parameters():
|
| 268 |
+
if param.requires_grad:
|
| 269 |
+
if len(param.shape) > 1:
|
| 270 |
+
torch.nn.init.xavier_uniform_(param)
|
| 271 |
+
else:
|
| 272 |
+
if 'weight' in name:
|
| 273 |
+
torch.nn.init.normal_(param)
|
| 274 |
+
else:
|
| 275 |
+
torch.nn.init.zeros_(param)
|
| 276 |
+
|
| 277 |
+
def forward(self, feats):
|
| 278 |
+
"""
|
| 279 |
+
Forward pass of the model.
|
| 280 |
+
"""
|
| 281 |
+
return PriorTransformerOutput(predicted_image_embedding=self.fc2(self.relu(self.fc1(feats))))
|
| 282 |
+
|
| 283 |
+
def save_pretrained(self, save_dir):
|
| 284 |
+
pass
|
| 285 |
+
# tensors = self.state_dict()
|
| 286 |
+
# safetensors.torch.save_file(tensors, os.path.join(save_dir, HF_SAFE_WEIGHTS_NAME_PRIOR))
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
def test_text_model(register=False, upload=False):
|
| 290 |
+
# register the classes
|
| 291 |
+
if register:
|
| 292 |
+
AutoConfig.register("clip_custom_text_model", CLIPTextEncoderOnlyConfig)
|
| 293 |
+
AutoModel.register(CLIPTextEncoderOnlyConfig, CLIPTextEncoderOnly)
|
| 294 |
+
CLIPTextEncoderOnlyConfig.register_for_auto_class()
|
| 295 |
+
CLIPTextEncoderOnly.register_for_auto_class("AutoModel")
|
| 296 |
+
|
| 297 |
+
if upload:
|
| 298 |
+
# Initialize the model
|
| 299 |
+
model_name = "openai/clip-vit-base-patch32"
|
| 300 |
+
pretrained=True
|
| 301 |
+
lora=None
|
| 302 |
+
|
| 303 |
+
cfg = CLIPTextEncoderOnlyConfig(model_name=model_name, pretrained=pretrained, lora=lora)
|
| 304 |
+
model = CLIPTextEncoderOnly(cfg)
|
| 305 |
+
model.push_to_hub("test-text-hf-upload")
|
| 306 |
+
|
| 307 |
+
model = CLIPTextEncoderOnly.from_pretrained("mpatel57/test-text-hf-upload", force_download=True)
|
| 308 |
+
|
| 309 |
+
def test_vision_model(register=False, upload=False):
|
| 310 |
+
# register the classes
|
| 311 |
+
if register:
|
| 312 |
+
AutoConfig.register("clip_custom_vision_model", CLIPVisionEncoderOnlyConfig)
|
| 313 |
+
AutoModel.register(CLIPVisionEncoderOnlyConfig, CLIPVisionEncoderOnly)
|
| 314 |
+
CLIPVisionEncoderOnlyConfig.register_for_auto_class()
|
| 315 |
+
CLIPVisionEncoderOnly.register_for_auto_class("AutoModel")
|
| 316 |
+
|
| 317 |
+
if upload:
|
| 318 |
+
# Initialize the model
|
| 319 |
+
model_name = "openai/clip-vit-base-patch32"
|
| 320 |
+
pretrained=True
|
| 321 |
+
lora=None
|
| 322 |
+
|
| 323 |
+
cfg = CLIPVisionEncoderOnlyConfig(model_name=model_name, pretrained=pretrained, lora=lora)
|
| 324 |
+
model = CLIPVisionEncoderOnly(cfg)
|
| 325 |
+
model.push_to_hub("test-vision-hf-upload")
|
| 326 |
+
|
| 327 |
+
model = CLIPVisionEncoderOnly.from_pretrained("mpatel57/test-vision-hf-upload", force_download=True)
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
if __name__ == "__main__":
|
| 331 |
+
test_text_model(register=False, upload=True)
|
| 332 |
+
test_vision_model(register=False, upload=True)
|
utils.py
ADDED
|
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoConfig, AutoModel, PretrainedConfig, CLIPTextConfig, CLIPVisionConfig, PreTrainedModel, CLIPTextModelWithProjection, CLIPVisionModelWithProjection
|
| 2 |
+
from transformers.utils import ModelOutput
|
| 3 |
+
import torch
|
| 4 |
+
import open_clip
|
| 5 |
+
from dataclasses import dataclass
|
| 6 |
+
import safetensors.torch
|
| 7 |
+
from peft import get_peft_config, get_peft_model, LoraConfig, TaskType
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
HF_SAFE_WEIGHTS_NAME = "open_clip_model.safetensors"
|
| 11 |
+
HF_SAFE_WEIGHTS_NAME_PRIOR = "prior_model.safetensors"
|
| 12 |
+
|
| 13 |
+
@dataclass
|
| 14 |
+
class PriorTransformerOutput(ModelOutput):
|
| 15 |
+
"""
|
| 16 |
+
The output of [`PriorTransformer`].
|
| 17 |
+
|
| 18 |
+
Args:
|
| 19 |
+
predicted_image_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`):
|
| 20 |
+
The predicted CLIP image embedding conditioned on the CLIP text embedding input.
|
| 21 |
+
"""
|
| 22 |
+
|
| 23 |
+
predicted_image_embedding: torch.FloatTensor
|
| 24 |
+
|
| 25 |
+
@dataclass
|
| 26 |
+
class TextEncoderOutput(ModelOutput):
|
| 27 |
+
"""
|
| 28 |
+
Output class for CLIPTextEncoderOnly model to store the outputs in a Hugging Face transformer style.
|
| 29 |
+
|
| 30 |
+
Attributes:
|
| 31 |
+
prompt_embeds (torch.Tensor): The embeddings of the input prompts.
|
| 32 |
+
last_hidden_states (torch.Tensor): The last hidden states from the model.
|
| 33 |
+
"""
|
| 34 |
+
text_embeds: torch.FloatTensor = None
|
| 35 |
+
last_hidden_state: torch.FloatTensor = None
|
| 36 |
+
|
| 37 |
+
class CLIPTextEncoderOnlyConfig(CLIPTextConfig):
|
| 38 |
+
model_type = "clip_custom_text_model"
|
| 39 |
+
|
| 40 |
+
def __init__(self, model_name: str = None, pretrained: bool = True, frozen: bool = False, lora: dict = None, **kwargs):
|
| 41 |
+
self.model_name = model_name
|
| 42 |
+
self.pretrained = pretrained
|
| 43 |
+
self.frozen = frozen
|
| 44 |
+
self.lora = lora
|
| 45 |
+
super().__init__(**kwargs)
|
| 46 |
+
|
| 47 |
+
class CLIPTextEncoderOnly(PreTrainedModel):
|
| 48 |
+
config_class = CLIPTextEncoderOnlyConfig
|
| 49 |
+
|
| 50 |
+
def __init__(self, config):
|
| 51 |
+
"""
|
| 52 |
+
Initializes the Hugging Face text encoder for CLIP model, inheriting from PreTrainedModel.
|
| 53 |
+
|
| 54 |
+
:param model_name: The name or path of the pretrained model.
|
| 55 |
+
:param pretrained: Whether to load the pretrained weights.
|
| 56 |
+
"""
|
| 57 |
+
super().__init__(config)
|
| 58 |
+
|
| 59 |
+
if config.pretrained:
|
| 60 |
+
self.model = CLIPTextModelWithProjection.from_pretrained(config.model_name)
|
| 61 |
+
else:
|
| 62 |
+
base_cfg = CLIPTextConfig.from_pretrained(config.model_name)
|
| 63 |
+
self.model = CLIPTextModelWithProjection(base_cfg)
|
| 64 |
+
|
| 65 |
+
if config.lora:
|
| 66 |
+
l_config = LoraConfig(
|
| 67 |
+
r=config.lora.lora_r,
|
| 68 |
+
lora_alpha=config.lora.lora_alpha,
|
| 69 |
+
target_modules=[
|
| 70 |
+
"k_proj",
|
| 71 |
+
"v_proj",
|
| 72 |
+
"q_proj",
|
| 73 |
+
"out_proj",
|
| 74 |
+
"fc1",
|
| 75 |
+
"fc2",
|
| 76 |
+
"visual_projection",
|
| 77 |
+
"text_projection"
|
| 78 |
+
],
|
| 79 |
+
lora_dropout=config.lora.lora_dropout,
|
| 80 |
+
bias="lora_only",
|
| 81 |
+
)
|
| 82 |
+
self.model = get_peft_model(self.model, l_config)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def forward(self, input_ids, attention_mask=None, position_ids=None):
|
| 86 |
+
"""
|
| 87 |
+
Forward pass of the model.
|
| 88 |
+
|
| 89 |
+
:param input_ids: Indices of input sequence tokens in the vocabulary.
|
| 90 |
+
:param attention_mask: Mask to avoid performing attention on padding token indices.
|
| 91 |
+
:param token_type_ids: Segment token indices to indicate first and second portions of the inputs.
|
| 92 |
+
:return: Outputs of the model.
|
| 93 |
+
"""
|
| 94 |
+
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_hidden_states=True)
|
| 95 |
+
return TextEncoderOutput(text_embeds=outputs.text_embeds, last_hidden_state=outputs.last_hidden_state)
|
| 96 |
+
|
| 97 |
+
class CustomTextEncoderOnly(PreTrainedModel):
|
| 98 |
+
def __init__(self, model_name: str, output_hidden_size: int, pretrained: bool = True, frozen: bool = True, last_hidden_state: bool = False, lora: dict = None):
|
| 99 |
+
"""
|
| 100 |
+
Initializes the Hugging Face text encoder for CLIP model, inheriting from PreTrainedModel.
|
| 101 |
+
|
| 102 |
+
:param model_name: The name or path of the pretrained model.
|
| 103 |
+
:param pretrained: Whether to load the pretrained weights.
|
| 104 |
+
"""
|
| 105 |
+
config = AutoModel.from_pretrained(model_name).config
|
| 106 |
+
super().__init__(config)
|
| 107 |
+
self.last_hidden_state = last_hidden_state
|
| 108 |
+
|
| 109 |
+
if pretrained:
|
| 110 |
+
self.model = AutoModel.from_pretrained(model_name)
|
| 111 |
+
if frozen:
|
| 112 |
+
for param in self.model.parameters():
|
| 113 |
+
param.requires_grad = False
|
| 114 |
+
else:
|
| 115 |
+
self.model = AutoModel(config)
|
| 116 |
+
|
| 117 |
+
self.fc1 = torch.nn.Linear(self.model.config.hidden_size, output_hidden_size)
|
| 118 |
+
if last_hidden_state:
|
| 119 |
+
self.fc2 = torch.nn.Linear(self.model.config.hidden_size, output_hidden_size)
|
| 120 |
+
|
| 121 |
+
if lora:
|
| 122 |
+
l_config = LoraConfig(
|
| 123 |
+
task_type=TaskType.FEATURE_EXTRACTION,
|
| 124 |
+
r=lora.lora_r,
|
| 125 |
+
lora_alpha=lora.lora_alpha,
|
| 126 |
+
lora_dropout=lora.lora_dropout,
|
| 127 |
+
bias="lora_only",
|
| 128 |
+
)
|
| 129 |
+
self.model = get_peft_model(self.model, l_config)
|
| 130 |
+
|
| 131 |
+
def forward(self, input_ids, attention_mask=None, token_type_ids=None):
|
| 132 |
+
"""
|
| 133 |
+
Forward pass of the model.
|
| 134 |
+
|
| 135 |
+
:param input_ids: Indices of input sequence tokens in the vocabulary.
|
| 136 |
+
:param attention_mask: Mask to avoid performing attention on padding token indices.
|
| 137 |
+
:param token_type_ids: Segment token indices to indicate first and second portions of the inputs.
|
| 138 |
+
:return: Outputs of the model.
|
| 139 |
+
"""
|
| 140 |
+
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, output_hidden_states=True)
|
| 141 |
+
text_embeds = self.fc1(outputs[1])
|
| 142 |
+
last_hidden_state = None
|
| 143 |
+
if self.last_hidden_state:
|
| 144 |
+
last_hidden_state = self.fc2(outputs[0])
|
| 145 |
+
else:
|
| 146 |
+
last_hidden_state = outputs[0]
|
| 147 |
+
return TextEncoderOutput(text_embeds=text_embeds, last_hidden_state=last_hidden_state)
|
| 148 |
+
|
| 149 |
+
class CLIPVisionEncoderOnlyConfig(PretrainedConfig):
|
| 150 |
+
model_type = "clip_custom_vision_model"
|
| 151 |
+
|
| 152 |
+
def __init__(self, model_name: str = None, pretrained: bool = True, frozen: bool = False, lora: dict = None, **kwargs):
|
| 153 |
+
self.model_name = model_name
|
| 154 |
+
self.pretrained = pretrained
|
| 155 |
+
self.frozen = frozen
|
| 156 |
+
self.lora = lora
|
| 157 |
+
super().__init__(**kwargs)
|
| 158 |
+
|
| 159 |
+
class CLIPVisionEncoderOnly(PreTrainedModel):
|
| 160 |
+
config_class = CLIPVisionEncoderOnlyConfig
|
| 161 |
+
|
| 162 |
+
def __init__(self, config):
|
| 163 |
+
"""
|
| 164 |
+
Initializes the Hugging Face text encoder for CLIP model, inheriting from PreTrainedModel.
|
| 165 |
+
|
| 166 |
+
:param model_name: The name or path of the pretrained model.
|
| 167 |
+
:param pretrained: Whether to load the pretrained weights.
|
| 168 |
+
"""
|
| 169 |
+
super().__init__(config)
|
| 170 |
+
|
| 171 |
+
if config.pretrained:
|
| 172 |
+
self.model = CLIPVisionModelWithProjection.from_pretrained(config.model_name)
|
| 173 |
+
else:
|
| 174 |
+
base_cfg = CLIPVisionConfig.from_pretrained(config.model_name)
|
| 175 |
+
self.model = CLIPVisionModelWithProjection(base_cfg)
|
| 176 |
+
|
| 177 |
+
if config.lora:
|
| 178 |
+
l_config = LoraConfig(
|
| 179 |
+
r=config.lora.lora_r,
|
| 180 |
+
lora_alpha=config.lora.lora_alpha,
|
| 181 |
+
target_modules=[
|
| 182 |
+
"k_proj",
|
| 183 |
+
"v_proj",
|
| 184 |
+
"q_proj",
|
| 185 |
+
"out_proj",
|
| 186 |
+
"fc1",
|
| 187 |
+
"fc2",
|
| 188 |
+
"visual_projection",
|
| 189 |
+
"text_projection"
|
| 190 |
+
],
|
| 191 |
+
lora_dropout=config.lora.lora_dropout,
|
| 192 |
+
bias="lora_only",
|
| 193 |
+
)
|
| 194 |
+
self.model = get_peft_model(self.model, l_config)
|
| 195 |
+
|
| 196 |
+
def forward(self, data):
|
| 197 |
+
"""
|
| 198 |
+
Forward pass of the model.
|
| 199 |
+
"""
|
| 200 |
+
return self.model(**data).image_embeds
|
| 201 |
+
|
| 202 |
+
def parameters(self):
|
| 203 |
+
return self.model.parameters()
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
class OpenCLIPVisionEncoderOnly(torch.nn.Module):
|
| 207 |
+
def __init__(self, model_name: str, pretrained: bool = True, frozen: bool = False, lora: dict = None):
|
| 208 |
+
"""
|
| 209 |
+
Initializes the Hugging Face text encoder for CLIP model, inheriting from PreTrainedModel.
|
| 210 |
+
|
| 211 |
+
:param model_name: The name or path of the pretrained model.
|
| 212 |
+
:param pretrained: Whether to load the pretrained weights.
|
| 213 |
+
"""
|
| 214 |
+
super().__init__()
|
| 215 |
+
if pretrained:
|
| 216 |
+
model, _ = open_clip.create_model_from_pretrained(f"hf-hub:{model_name}")
|
| 217 |
+
model = model.visual
|
| 218 |
+
else:
|
| 219 |
+
raise NotImplemented
|
| 220 |
+
self.model = model
|
| 221 |
+
|
| 222 |
+
if lora:
|
| 223 |
+
l_config = LoraConfig(
|
| 224 |
+
r=lora.lora_r,
|
| 225 |
+
lora_alpha=lora.lora_alpha,
|
| 226 |
+
target_modules=[
|
| 227 |
+
"k_proj",
|
| 228 |
+
"v_proj",
|
| 229 |
+
"q_proj",
|
| 230 |
+
"out_proj",
|
| 231 |
+
"fc1",
|
| 232 |
+
"fc2",
|
| 233 |
+
"visual_projection",
|
| 234 |
+
"text_projection"
|
| 235 |
+
],
|
| 236 |
+
lora_dropout=lora.lora_dropout,
|
| 237 |
+
bias="lora_only",
|
| 238 |
+
)
|
| 239 |
+
self.model = get_peft_model(self.model, l_config)
|
| 240 |
+
|
| 241 |
+
def forward(self, image):
|
| 242 |
+
"""
|
| 243 |
+
Forward pass of the model.
|
| 244 |
+
"""
|
| 245 |
+
return self.model(image)
|
| 246 |
+
|
| 247 |
+
def save_pretrained(self, save_dir):
|
| 248 |
+
tensors = self.model.state_dict()
|
| 249 |
+
safetensors.torch.save_file(tensors, save_dir / HF_SAFE_WEIGHTS_NAME)
|
| 250 |
+
|
| 251 |
+
class CustomPriorModel(torch.nn.Module):
|
| 252 |
+
def __init__(self, in_hidden_state, out_hidden_state):
|
| 253 |
+
"""
|
| 254 |
+
Initializes the Hugging Face text encoder for CLIP model, inheriting from PreTrainedModel.
|
| 255 |
+
|
| 256 |
+
:param model_name: The name or path of the pretrained model.
|
| 257 |
+
:param pretrained: Whether to load the pretrained weights.
|
| 258 |
+
"""
|
| 259 |
+
super().__init__()
|
| 260 |
+
mid_hidden_state = max(in_hidden_state, out_hidden_state)
|
| 261 |
+
|
| 262 |
+
self.fc1 = torch.nn.Linear(in_hidden_state*2, mid_hidden_state)
|
| 263 |
+
self.relu = torch.nn.ReLU()
|
| 264 |
+
self.fc2 = torch.nn.Linear(mid_hidden_state, out_hidden_state)
|
| 265 |
+
|
| 266 |
+
def reinitialize_model(self):
|
| 267 |
+
for name, param in self.named_parameters():
|
| 268 |
+
if param.requires_grad:
|
| 269 |
+
if len(param.shape) > 1:
|
| 270 |
+
torch.nn.init.xavier_uniform_(param)
|
| 271 |
+
else:
|
| 272 |
+
if 'weight' in name:
|
| 273 |
+
torch.nn.init.normal_(param)
|
| 274 |
+
else:
|
| 275 |
+
torch.nn.init.zeros_(param)
|
| 276 |
+
|
| 277 |
+
def forward(self, feats):
|
| 278 |
+
"""
|
| 279 |
+
Forward pass of the model.
|
| 280 |
+
"""
|
| 281 |
+
return PriorTransformerOutput(predicted_image_embedding=self.fc2(self.relu(self.fc1(feats))))
|
| 282 |
+
|
| 283 |
+
def save_pretrained(self, save_dir):
|
| 284 |
+
pass
|
| 285 |
+
# tensors = self.state_dict()
|
| 286 |
+
# safetensors.torch.save_file(tensors, os.path.join(save_dir, HF_SAFE_WEIGHTS_NAME_PRIOR))
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
def test_text_model(register=False, upload=False):
|
| 290 |
+
# register the classes
|
| 291 |
+
if register:
|
| 292 |
+
AutoConfig.register("clip_custom_text_model", CLIPTextEncoderOnlyConfig)
|
| 293 |
+
AutoModel.register(CLIPTextEncoderOnlyConfig, CLIPTextEncoderOnly)
|
| 294 |
+
CLIPTextEncoderOnlyConfig.register_for_auto_class()
|
| 295 |
+
CLIPTextEncoderOnly.register_for_auto_class("AutoModel")
|
| 296 |
+
|
| 297 |
+
if upload:
|
| 298 |
+
# Initialize the model
|
| 299 |
+
model_name = "openai/clip-vit-base-patch32"
|
| 300 |
+
pretrained=True
|
| 301 |
+
lora=None
|
| 302 |
+
|
| 303 |
+
cfg = CLIPTextEncoderOnlyConfig(model_name=model_name, pretrained=pretrained, lora=lora)
|
| 304 |
+
model = CLIPTextEncoderOnly(cfg)
|
| 305 |
+
model.push_to_hub("test-text-hf-upload")
|
| 306 |
+
|
| 307 |
+
model = CLIPTextEncoderOnly.from_pretrained("mpatel57/test-text-hf-upload", force_download=True)
|
| 308 |
+
|
| 309 |
+
def test_vision_model(register=False, upload=False):
|
| 310 |
+
# register the classes
|
| 311 |
+
if register:
|
| 312 |
+
AutoConfig.register("clip_custom_vision_model", CLIPVisionEncoderOnlyConfig)
|
| 313 |
+
AutoModel.register(CLIPVisionEncoderOnlyConfig, CLIPVisionEncoderOnly)
|
| 314 |
+
CLIPVisionEncoderOnlyConfig.register_for_auto_class()
|
| 315 |
+
CLIPVisionEncoderOnly.register_for_auto_class("AutoModel")
|
| 316 |
+
|
| 317 |
+
if upload:
|
| 318 |
+
# Initialize the model
|
| 319 |
+
model_name = "openai/clip-vit-base-patch32"
|
| 320 |
+
pretrained=True
|
| 321 |
+
lora=None
|
| 322 |
+
|
| 323 |
+
cfg = CLIPVisionEncoderOnlyConfig(model_name=model_name, pretrained=pretrained, lora=lora)
|
| 324 |
+
model = CLIPVisionEncoderOnly(cfg)
|
| 325 |
+
model.push_to_hub("test-vision-hf-upload")
|
| 326 |
+
|
| 327 |
+
model = CLIPVisionEncoderOnly.from_pretrained("mpatel57/test-vision-hf-upload", force_download=True)
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
if __name__ == "__main__":
|
| 331 |
+
test_text_model(register=False, upload=True)
|
| 332 |
+
test_vision_model(register=False, upload=True)
|
vision-encoder/config.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"CLIPVisionEncoderOnly"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "utils.CLIPVisionEncoderOnlyConfig",
|
| 7 |
+
"AutoModel": "utils.CLIPVisionEncoderOnly"
|
| 8 |
+
},
|
| 9 |
+
"frozen": false,
|
| 10 |
+
"lora": null,
|
| 11 |
+
"model_name": "openai/clip-vit-base-patch32",
|
| 12 |
+
"model_type": "clip_custom_vision_model",
|
| 13 |
+
"pretrained": false,
|
| 14 |
+
"torch_dtype": "float32",
|
| 15 |
+
"transformers_version": "4.40.1"
|
| 16 |
+
}
|
vision-encoder/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:29cb615e72ca4eebeda4d2ec6ca87e9f39e85dca939260bf6e04e06542d3103c
|
| 3 |
+
size 351421984
|
vision-encoder/utils.py
ADDED
|
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoConfig, AutoModel, PretrainedConfig, CLIPTextConfig, CLIPVisionConfig, PreTrainedModel, CLIPTextModelWithProjection, CLIPVisionModelWithProjection
|
| 2 |
+
from transformers.utils import ModelOutput
|
| 3 |
+
import torch
|
| 4 |
+
import open_clip
|
| 5 |
+
from dataclasses import dataclass
|
| 6 |
+
import safetensors.torch
|
| 7 |
+
from peft import get_peft_config, get_peft_model, LoraConfig, TaskType
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
HF_SAFE_WEIGHTS_NAME = "open_clip_model.safetensors"
|
| 11 |
+
HF_SAFE_WEIGHTS_NAME_PRIOR = "prior_model.safetensors"
|
| 12 |
+
|
| 13 |
+
@dataclass
|
| 14 |
+
class PriorTransformerOutput(ModelOutput):
|
| 15 |
+
"""
|
| 16 |
+
The output of [`PriorTransformer`].
|
| 17 |
+
|
| 18 |
+
Args:
|
| 19 |
+
predicted_image_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`):
|
| 20 |
+
The predicted CLIP image embedding conditioned on the CLIP text embedding input.
|
| 21 |
+
"""
|
| 22 |
+
|
| 23 |
+
predicted_image_embedding: torch.FloatTensor
|
| 24 |
+
|
| 25 |
+
@dataclass
|
| 26 |
+
class TextEncoderOutput(ModelOutput):
|
| 27 |
+
"""
|
| 28 |
+
Output class for CLIPTextEncoderOnly model to store the outputs in a Hugging Face transformer style.
|
| 29 |
+
|
| 30 |
+
Attributes:
|
| 31 |
+
prompt_embeds (torch.Tensor): The embeddings of the input prompts.
|
| 32 |
+
last_hidden_states (torch.Tensor): The last hidden states from the model.
|
| 33 |
+
"""
|
| 34 |
+
text_embeds: torch.FloatTensor = None
|
| 35 |
+
last_hidden_state: torch.FloatTensor = None
|
| 36 |
+
|
| 37 |
+
class CLIPTextEncoderOnlyConfig(CLIPTextConfig):
|
| 38 |
+
model_type = "clip_custom_text_model"
|
| 39 |
+
|
| 40 |
+
def __init__(self, model_name: str = None, pretrained: bool = True, frozen: bool = False, lora: dict = None, **kwargs):
|
| 41 |
+
self.model_name = model_name
|
| 42 |
+
self.pretrained = pretrained
|
| 43 |
+
self.frozen = frozen
|
| 44 |
+
self.lora = lora
|
| 45 |
+
super().__init__(**kwargs)
|
| 46 |
+
|
| 47 |
+
class CLIPTextEncoderOnly(PreTrainedModel):
|
| 48 |
+
config_class = CLIPTextEncoderOnlyConfig
|
| 49 |
+
|
| 50 |
+
def __init__(self, config):
|
| 51 |
+
"""
|
| 52 |
+
Initializes the Hugging Face text encoder for CLIP model, inheriting from PreTrainedModel.
|
| 53 |
+
|
| 54 |
+
:param model_name: The name or path of the pretrained model.
|
| 55 |
+
:param pretrained: Whether to load the pretrained weights.
|
| 56 |
+
"""
|
| 57 |
+
super().__init__(config)
|
| 58 |
+
|
| 59 |
+
if config.pretrained:
|
| 60 |
+
self.model = CLIPTextModelWithProjection.from_pretrained(config.model_name)
|
| 61 |
+
else:
|
| 62 |
+
base_cfg = CLIPTextConfig.from_pretrained(config.model_name)
|
| 63 |
+
self.model = CLIPTextModelWithProjection(base_cfg)
|
| 64 |
+
|
| 65 |
+
if config.lora:
|
| 66 |
+
l_config = LoraConfig(
|
| 67 |
+
r=config.lora.lora_r,
|
| 68 |
+
lora_alpha=config.lora.lora_alpha,
|
| 69 |
+
target_modules=[
|
| 70 |
+
"k_proj",
|
| 71 |
+
"v_proj",
|
| 72 |
+
"q_proj",
|
| 73 |
+
"out_proj",
|
| 74 |
+
"fc1",
|
| 75 |
+
"fc2",
|
| 76 |
+
"visual_projection",
|
| 77 |
+
"text_projection"
|
| 78 |
+
],
|
| 79 |
+
lora_dropout=config.lora.lora_dropout,
|
| 80 |
+
bias="lora_only",
|
| 81 |
+
)
|
| 82 |
+
self.model = get_peft_model(self.model, l_config)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def forward(self, input_ids, attention_mask=None, position_ids=None):
|
| 86 |
+
"""
|
| 87 |
+
Forward pass of the model.
|
| 88 |
+
|
| 89 |
+
:param input_ids: Indices of input sequence tokens in the vocabulary.
|
| 90 |
+
:param attention_mask: Mask to avoid performing attention on padding token indices.
|
| 91 |
+
:param token_type_ids: Segment token indices to indicate first and second portions of the inputs.
|
| 92 |
+
:return: Outputs of the model.
|
| 93 |
+
"""
|
| 94 |
+
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_hidden_states=True)
|
| 95 |
+
return TextEncoderOutput(text_embeds=outputs.text_embeds, last_hidden_state=outputs.last_hidden_state)
|
| 96 |
+
|
| 97 |
+
class CustomTextEncoderOnly(PreTrainedModel):
|
| 98 |
+
def __init__(self, model_name: str, output_hidden_size: int, pretrained: bool = True, frozen: bool = True, last_hidden_state: bool = False, lora: dict = None):
|
| 99 |
+
"""
|
| 100 |
+
Initializes the Hugging Face text encoder for CLIP model, inheriting from PreTrainedModel.
|
| 101 |
+
|
| 102 |
+
:param model_name: The name or path of the pretrained model.
|
| 103 |
+
:param pretrained: Whether to load the pretrained weights.
|
| 104 |
+
"""
|
| 105 |
+
config = AutoModel.from_pretrained(model_name).config
|
| 106 |
+
super().__init__(config)
|
| 107 |
+
self.last_hidden_state = last_hidden_state
|
| 108 |
+
|
| 109 |
+
if pretrained:
|
| 110 |
+
self.model = AutoModel.from_pretrained(model_name)
|
| 111 |
+
if frozen:
|
| 112 |
+
for param in self.model.parameters():
|
| 113 |
+
param.requires_grad = False
|
| 114 |
+
else:
|
| 115 |
+
self.model = AutoModel(config)
|
| 116 |
+
|
| 117 |
+
self.fc1 = torch.nn.Linear(self.model.config.hidden_size, output_hidden_size)
|
| 118 |
+
if last_hidden_state:
|
| 119 |
+
self.fc2 = torch.nn.Linear(self.model.config.hidden_size, output_hidden_size)
|
| 120 |
+
|
| 121 |
+
if lora:
|
| 122 |
+
l_config = LoraConfig(
|
| 123 |
+
task_type=TaskType.FEATURE_EXTRACTION,
|
| 124 |
+
r=lora.lora_r,
|
| 125 |
+
lora_alpha=lora.lora_alpha,
|
| 126 |
+
lora_dropout=lora.lora_dropout,
|
| 127 |
+
bias="lora_only",
|
| 128 |
+
)
|
| 129 |
+
self.model = get_peft_model(self.model, l_config)
|
| 130 |
+
|
| 131 |
+
def forward(self, input_ids, attention_mask=None, token_type_ids=None):
|
| 132 |
+
"""
|
| 133 |
+
Forward pass of the model.
|
| 134 |
+
|
| 135 |
+
:param input_ids: Indices of input sequence tokens in the vocabulary.
|
| 136 |
+
:param attention_mask: Mask to avoid performing attention on padding token indices.
|
| 137 |
+
:param token_type_ids: Segment token indices to indicate first and second portions of the inputs.
|
| 138 |
+
:return: Outputs of the model.
|
| 139 |
+
"""
|
| 140 |
+
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, output_hidden_states=True)
|
| 141 |
+
text_embeds = self.fc1(outputs[1])
|
| 142 |
+
last_hidden_state = None
|
| 143 |
+
if self.last_hidden_state:
|
| 144 |
+
last_hidden_state = self.fc2(outputs[0])
|
| 145 |
+
else:
|
| 146 |
+
last_hidden_state = outputs[0]
|
| 147 |
+
return TextEncoderOutput(text_embeds=text_embeds, last_hidden_state=last_hidden_state)
|
| 148 |
+
|
| 149 |
+
class CLIPVisionEncoderOnlyConfig(PretrainedConfig):
|
| 150 |
+
model_type = "clip_custom_vision_model"
|
| 151 |
+
|
| 152 |
+
def __init__(self, model_name: str = None, pretrained: bool = True, frozen: bool = False, lora: dict = None, **kwargs):
|
| 153 |
+
self.model_name = model_name
|
| 154 |
+
self.pretrained = pretrained
|
| 155 |
+
self.frozen = frozen
|
| 156 |
+
self.lora = lora
|
| 157 |
+
super().__init__(**kwargs)
|
| 158 |
+
|
| 159 |
+
class CLIPVisionEncoderOnly(PreTrainedModel):
|
| 160 |
+
config_class = CLIPVisionEncoderOnlyConfig
|
| 161 |
+
|
| 162 |
+
def __init__(self, config):
|
| 163 |
+
"""
|
| 164 |
+
Initializes the Hugging Face text encoder for CLIP model, inheriting from PreTrainedModel.
|
| 165 |
+
|
| 166 |
+
:param model_name: The name or path of the pretrained model.
|
| 167 |
+
:param pretrained: Whether to load the pretrained weights.
|
| 168 |
+
"""
|
| 169 |
+
super().__init__(config)
|
| 170 |
+
|
| 171 |
+
if config.pretrained:
|
| 172 |
+
self.model = CLIPVisionModelWithProjection.from_pretrained(config.model_name)
|
| 173 |
+
else:
|
| 174 |
+
base_cfg = CLIPVisionConfig.from_pretrained(config.model_name)
|
| 175 |
+
self.model = CLIPVisionModelWithProjection(base_cfg)
|
| 176 |
+
|
| 177 |
+
if config.lora:
|
| 178 |
+
l_config = LoraConfig(
|
| 179 |
+
r=config.lora.lora_r,
|
| 180 |
+
lora_alpha=config.lora.lora_alpha,
|
| 181 |
+
target_modules=[
|
| 182 |
+
"k_proj",
|
| 183 |
+
"v_proj",
|
| 184 |
+
"q_proj",
|
| 185 |
+
"out_proj",
|
| 186 |
+
"fc1",
|
| 187 |
+
"fc2",
|
| 188 |
+
"visual_projection",
|
| 189 |
+
"text_projection"
|
| 190 |
+
],
|
| 191 |
+
lora_dropout=config.lora.lora_dropout,
|
| 192 |
+
bias="lora_only",
|
| 193 |
+
)
|
| 194 |
+
self.model = get_peft_model(self.model, l_config)
|
| 195 |
+
|
| 196 |
+
def forward(self, data):
|
| 197 |
+
"""
|
| 198 |
+
Forward pass of the model.
|
| 199 |
+
"""
|
| 200 |
+
return self.model(**data).image_embeds
|
| 201 |
+
|
| 202 |
+
def parameters(self):
|
| 203 |
+
return self.model.parameters()
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
class OpenCLIPVisionEncoderOnly(torch.nn.Module):
|
| 207 |
+
def __init__(self, model_name: str, pretrained: bool = True, frozen: bool = False, lora: dict = None):
|
| 208 |
+
"""
|
| 209 |
+
Initializes the Hugging Face text encoder for CLIP model, inheriting from PreTrainedModel.
|
| 210 |
+
|
| 211 |
+
:param model_name: The name or path of the pretrained model.
|
| 212 |
+
:param pretrained: Whether to load the pretrained weights.
|
| 213 |
+
"""
|
| 214 |
+
super().__init__()
|
| 215 |
+
if pretrained:
|
| 216 |
+
model, _ = open_clip.create_model_from_pretrained(f"hf-hub:{model_name}")
|
| 217 |
+
model = model.visual
|
| 218 |
+
else:
|
| 219 |
+
raise NotImplemented
|
| 220 |
+
self.model = model
|
| 221 |
+
|
| 222 |
+
if lora:
|
| 223 |
+
l_config = LoraConfig(
|
| 224 |
+
r=lora.lora_r,
|
| 225 |
+
lora_alpha=lora.lora_alpha,
|
| 226 |
+
target_modules=[
|
| 227 |
+
"k_proj",
|
| 228 |
+
"v_proj",
|
| 229 |
+
"q_proj",
|
| 230 |
+
"out_proj",
|
| 231 |
+
"fc1",
|
| 232 |
+
"fc2",
|
| 233 |
+
"visual_projection",
|
| 234 |
+
"text_projection"
|
| 235 |
+
],
|
| 236 |
+
lora_dropout=lora.lora_dropout,
|
| 237 |
+
bias="lora_only",
|
| 238 |
+
)
|
| 239 |
+
self.model = get_peft_model(self.model, l_config)
|
| 240 |
+
|
| 241 |
+
def forward(self, image):
|
| 242 |
+
"""
|
| 243 |
+
Forward pass of the model.
|
| 244 |
+
"""
|
| 245 |
+
return self.model(image)
|
| 246 |
+
|
| 247 |
+
def save_pretrained(self, save_dir):
|
| 248 |
+
tensors = self.model.state_dict()
|
| 249 |
+
safetensors.torch.save_file(tensors, save_dir / HF_SAFE_WEIGHTS_NAME)
|
| 250 |
+
|
| 251 |
+
class CustomPriorModel(torch.nn.Module):
|
| 252 |
+
def __init__(self, in_hidden_state, out_hidden_state):
|
| 253 |
+
"""
|
| 254 |
+
Initializes the Hugging Face text encoder for CLIP model, inheriting from PreTrainedModel.
|
| 255 |
+
|
| 256 |
+
:param model_name: The name or path of the pretrained model.
|
| 257 |
+
:param pretrained: Whether to load the pretrained weights.
|
| 258 |
+
"""
|
| 259 |
+
super().__init__()
|
| 260 |
+
mid_hidden_state = max(in_hidden_state, out_hidden_state)
|
| 261 |
+
|
| 262 |
+
self.fc1 = torch.nn.Linear(in_hidden_state*2, mid_hidden_state)
|
| 263 |
+
self.relu = torch.nn.ReLU()
|
| 264 |
+
self.fc2 = torch.nn.Linear(mid_hidden_state, out_hidden_state)
|
| 265 |
+
|
| 266 |
+
def reinitialize_model(self):
|
| 267 |
+
for name, param in self.named_parameters():
|
| 268 |
+
if param.requires_grad:
|
| 269 |
+
if len(param.shape) > 1:
|
| 270 |
+
torch.nn.init.xavier_uniform_(param)
|
| 271 |
+
else:
|
| 272 |
+
if 'weight' in name:
|
| 273 |
+
torch.nn.init.normal_(param)
|
| 274 |
+
else:
|
| 275 |
+
torch.nn.init.zeros_(param)
|
| 276 |
+
|
| 277 |
+
def forward(self, feats):
|
| 278 |
+
"""
|
| 279 |
+
Forward pass of the model.
|
| 280 |
+
"""
|
| 281 |
+
return PriorTransformerOutput(predicted_image_embedding=self.fc2(self.relu(self.fc1(feats))))
|
| 282 |
+
|
| 283 |
+
def save_pretrained(self, save_dir):
|
| 284 |
+
pass
|
| 285 |
+
# tensors = self.state_dict()
|
| 286 |
+
# safetensors.torch.save_file(tensors, os.path.join(save_dir, HF_SAFE_WEIGHTS_NAME_PRIOR))
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
def test_text_model(register=False, upload=False):
|
| 290 |
+
# register the classes
|
| 291 |
+
if register:
|
| 292 |
+
AutoConfig.register("clip_custom_text_model", CLIPTextEncoderOnlyConfig)
|
| 293 |
+
AutoModel.register(CLIPTextEncoderOnlyConfig, CLIPTextEncoderOnly)
|
| 294 |
+
CLIPTextEncoderOnlyConfig.register_for_auto_class()
|
| 295 |
+
CLIPTextEncoderOnly.register_for_auto_class("AutoModel")
|
| 296 |
+
|
| 297 |
+
if upload:
|
| 298 |
+
# Initialize the model
|
| 299 |
+
model_name = "openai/clip-vit-base-patch32"
|
| 300 |
+
pretrained=True
|
| 301 |
+
lora=None
|
| 302 |
+
|
| 303 |
+
cfg = CLIPTextEncoderOnlyConfig(model_name=model_name, pretrained=pretrained, lora=lora)
|
| 304 |
+
model = CLIPTextEncoderOnly(cfg)
|
| 305 |
+
model.push_to_hub("test-text-hf-upload")
|
| 306 |
+
|
| 307 |
+
model = CLIPTextEncoderOnly.from_pretrained("mpatel57/test-text-hf-upload", force_download=True)
|
| 308 |
+
|
| 309 |
+
def test_vision_model(register=False, upload=False):
|
| 310 |
+
# register the classes
|
| 311 |
+
if register:
|
| 312 |
+
AutoConfig.register("clip_custom_vision_model", CLIPVisionEncoderOnlyConfig)
|
| 313 |
+
AutoModel.register(CLIPVisionEncoderOnlyConfig, CLIPVisionEncoderOnly)
|
| 314 |
+
CLIPVisionEncoderOnlyConfig.register_for_auto_class()
|
| 315 |
+
CLIPVisionEncoderOnly.register_for_auto_class("AutoModel")
|
| 316 |
+
|
| 317 |
+
if upload:
|
| 318 |
+
# Initialize the model
|
| 319 |
+
model_name = "openai/clip-vit-base-patch32"
|
| 320 |
+
pretrained=True
|
| 321 |
+
lora=None
|
| 322 |
+
|
| 323 |
+
cfg = CLIPVisionEncoderOnlyConfig(model_name=model_name, pretrained=pretrained, lora=lora)
|
| 324 |
+
model = CLIPVisionEncoderOnly(cfg)
|
| 325 |
+
model.push_to_hub("test-vision-hf-upload")
|
| 326 |
+
|
| 327 |
+
model = CLIPVisionEncoderOnly.from_pretrained("mpatel57/test-vision-hf-upload", force_download=True)
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
if __name__ == "__main__":
|
| 331 |
+
test_text_model(register=False, upload=True)
|
| 332 |
+
test_vision_model(register=False, upload=True)
|