--- license: mit base_model: roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-large-depression-classification results: [] --- # roberta-large-depression-classification This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1247 - Accuracy: 0.5841 - F1 Score: 0.5479 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| | 0.5166 | 1.0 | 1112 | 1.1247 | 0.5841 | 0.5479 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3