--- library_name: peft license: llama3.2 base_model: - meta-llama/Llama-3.2-1B-Instruct pipeline_tag: text-classification --- # Llama-3.2-1B-Instruct LoRA Instruction Classifier ### Model Description - **Base Model:** [Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) - **Adapter Method:** LoRA (Low-Rank Adaptation) - **Task:** Instruction classification into 10 labels ## Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification from peft import PeftModel # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained("Turalll/llama-1b-lora-instruct-classifier") # Load the base model (you must have access to LLaMA-1B) base_model = AutoModelForSequenceClassification.from_pretrained("path_to_llama-3.2-1B-Instruct_base_model", num_labels=10) # Load the LoRA adapter model = PeftModel.from_pretrained(base_model, "Turalll/llama-1b-lora-instruct-classifier") # Example inference text = "Your input text here" ## Custom label_ids:labels map id2id = { 0: "Health and Wellbeing", 1: "Cinema", 2: "Environmental Science", 3: "Software Development", 4: "Fashion", 5: "Career Development", 6: "Culinary Guide", 7: "Cybersecurity", 8: "Economics", 9: "Music" } ## Tokenize the input inputs = tokenizer( text, padding="max_length", truncation=True, max_length=128, return_tensors="pt" ) ## Move inputs to the same device as the model inputs = {k: v.to(device) for k, v in inputs.items()} ## Get predictions with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predicted_class_id = logits.argmax(dim=-1).item() ## Map predicted class ID to label predicted_label = id2label[predicted_class_id] print(f"Predicted label: {predicted_label}") ```