haritzpuerto commited on
Commit
ef97f35
1 Parent(s): e3b2ee2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -0
README.md CHANGED
@@ -1,3 +1,40 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ datasets:
4
+ - mrqa
5
+ language:
6
+ - en
7
+ metrics:
8
+ - squad
9
+ library_name: adapter-transformers
10
+ pipeline_tag: question-answering
11
  ---
12
+
13
+ This is the MADE Adapter for TriviaQA created by Friedman et al. (2021). This adapter should be used with this encoder: https://huggingface.co/UKP-SQuARE/MADE_Encoder
14
+
15
+
16
+
17
+ The UKP-SQuARE team created this model repository to simplify the deployment of this model on the UKP-SQuARE platform. The GitHub repository of the original authors is https://github.com/princeton-nlp/MADE
18
+
19
+ This model contains the same weights as https://huggingface.co/princeton-nlp/MADE/resolve/main/made_tuned_adapters/TriviaQA/model.pt. The only difference is that our repository follows the standard format of AdapterHub. Therefore, you could load this model as follows:
20
+
21
+ ```
22
+ from transformers import RobertaForQuestionAnswering, RobertaTokenizerFast
23
+
24
+ model = RobertaForQuestionAnswering.from_pretrained("UKP-SQuARE/MADE_Encoder")
25
+ model.load_adapter("UKP-SQuARE/MADE_TriviaQA_Adapter", source="hf")
26
+ model.set_active_adapters("TriviaQA")
27
+
28
+ tokenizer = RobertaTokenizerFast.from_pretrained('UKP-SQuARE/MADE_Encoder')
29
+
30
+ pipe = pipeline("question-answering", model=model, tokenizer=tokenizer)
31
+ pipe({"question": "What is the capital of Germany?", "context": "The capital of Germany is Berlin."})
32
+ ```
33
+
34
+ Note you need the adapter-transformers library https://adapterhub.ml
35
+
36
+
37
+ Please refer to the original publication for more information.
38
+
39
+ Citation:
40
+ Single-dataset Experts for Multi-dataset Question Answering (Friedman et al., EMNLP 2021)