--- license: cc-by-nc-4.0 language: - en - de - fr - zh - pt - nl - ru - ko - it - es metrics: - comet pipeline_tag: translation --- # Model Card for Model ID This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description TowerInstruct is a language model that results from fine-tuning TowerBase on the TowerBlocks supervised fine-tuning dataset. TowerInstruct v0.1 is the first model in the series. The model is trained to handle several translation-related tasks, such as general machine translation (e.g., sentence- and document-level translation, terminology-aware translation, context-aware translation), automatic post edition, named-entity recognition, gramatical error correction, and paraphrase generation. We will release more details in the upcoming technical report. - **Developed by:** Unbabel, Instituto Superior Técnico, CentraleSupélec University of Paris-Saclay - **Model type:** A 7B parameter model fine-tuned on a mix of publicly available, synthetic datasets on translation-related tasks, as well as conversational datasets and code instructions. - **Language(s) (NLP):** English, Portuguese, Spanish, French, German, Dutch, Italian, Korean, Chinese, Russian - **License:** CC-BY-NC-4.0 - **Finetuned from model [optional]:** TowerBase ## Intended uses & limitations The model was initially fine-tuned on a filtered and preprocessed supervised fine-tuning dataset (TowerBlocks), which contains a diverse range of data sources: - Translation - Automatic Post Edition - Machine Translation Evaluation - Context-aware Translation - Terminology-aware Translation - Multi-reference Translation - Named-entity Recognition - Paraphrase Generation - Synthetic Chat data - Code instructions You can find the dataset and all data sources of TowerBlocks here. Here's how you can run the model using the `pipeline()` function from 🤗 Transformers: ```python # Install transformers from source - only needed for versions <= v4.34 # pip install git+https://github.com/huggingface/transformers.git # pip install accelerate import torch from transformers import pipeline pipe = pipeline(“text-generation”, model=“Unbabel/TowerInstruct-v0.1", torch_dtype=torch.bfloat16, device_map=“cuda:3”) # We use the tokenizer’s chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating messages = [ {“role”: “user”, “content”: “Translate the following text from Portuguese into English.\nPortuguese: Um grupo de investigadores lançou um novo modelo para tarefas relacionadas com tradução.\nEnglish:“}, ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=256, do_sample=False) print(outputs[0][“generated_text”]) # <|im_start|>user # Translate the following text from Portuguese into English. # Portuguese: Um grupo de investigadores lançou um novo modelo para tarefas relacionadas com tradução. # English:<|im_end|> # <|im_start|>assistant # A group of researchers has launched a new model for translation-related tasks. ``` ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## Prompt Format Mention mlchat here (no system prompt) ### Supervised tasks Prompts for different tasks. [More Information Needed] ## Training Details ### Training Data Link to TowerBlocks. ### Training Procedure Write sth about Axolotl. #### Training Hyperparameters The following hyperparameters were used during training: learning_rate: 7e-06 seed: 42 distributed_type: multi-GPU num_devices: 4 total_train_batch_size: 256 optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 lr_scheduler_type: cosine lr_scheduler_warmup_steps: 500 weight_decay: 0.01 num_epochs: 4 max_seq_length: 2048 ## Citation To be completed. [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)