--- license: cc-by-nc-4.0 language: - en - de - fr - zh - pt - nl - ru - ko - it - es metrics: - comet pipeline_tag: translation --- # Model Card for Model ID This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description TowerInstruct is a language model that results from fine-tuning TowerBase on the TowerBricks supervised fine-tuning dataset. TowerInstruct v0.1 is the first model in the series. The model is trained to handle several translation-related tasks, such as general machine translation (e.g., sentence- and document-level translation, terminology-aware translation, context-aware translation), automatic post edition, named-entity recognition, gramatical error correction, and paraphrase generation. We will release more details in the upcoming technical report. - **Developed by:** Unbabel, Instituto Superior Técnico, CentraleSupélec University of Paris-Saclay - **Model type:** A 7B parameter model fine-tuned on a mix of publicly available, synthetic datasets on translation-related tasks, as well as conversational datasets and code instructions. - **Language(s) (NLP):** English, Portuguese, Spanish, French, German, Dutch, Italian, Korean, Chinese, Russian - **License:** CC-BY-NC-4.0 - **Finetuned from model [optional]:** TowerBase ## Intended uses & limitations The model was initially fine-tuned on a filtered and preprocessed supervised fine-tuning dataset (TowerBricks), which contains a diverse range of data sources: - Translation - Automatic Post Edition - Machine Translation Evaluation - Context-aware Translation - Terminology-aware Translation - Multi-reference Translation - Named-entity Recognition - Paraphrase Generation - Synthetic Chat data - Code instructions You can find the dataset and all data sources of TowerBricks here. ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]