File size: 4,339 Bytes
ab94533
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dfa1b2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
---

library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-1.5B-Instruct
tags:
- axolotl
- generated_from_trainer
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
model-index:
- name: a7706e92-133c-4e5d-bca1-aad5a4fc27e6
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml

accelerate_config:

  dynamo_backend: inductor

  mixed_precision: bf16

  num_machines: 1

  num_processes: auto

  use_cpu: false

adapter: lora

base_model: Qwen/Qwen2.5-1.5B-Instruct

bf16: auto

chat_template: llama3

dataset_prepared_path: null

datasets:

- data_files:

  - 733c43e45c9d282a_train_data.json

  ds_type: json

  format: custom

  path: /workspace/input_data/733c43e45c9d282a_train_data.json

  type:

    field_instruction: problem

    field_output: solution

    format: '{instruction}'

    no_input_format: '{instruction}'

    system_format: '{system}'

    system_prompt: ''

debug: null

deepspeed: null

device_map: auto

early_stopping_patience: null

eval_max_new_tokens: 128

eval_table_size: null

evals_per_epoch: 4

flash_attention: false

fp16: null

fsdp: null

fsdp_config: null

gradient_accumulation_steps: 16

gradient_checkpointing: true

group_by_length: false

hub_model_id: VERSIL91/a7706e92-133c-4e5d-bca1-aad5a4fc27e6

hub_repo: null

hub_strategy: checkpoint

hub_token: null

learning_rate: 0.0001

local_rank: null

logging_steps: 1

lora_alpha: 16

lora_dropout: 0.05

lora_fan_in_fan_out: null

lora_model_dir: null

lora_r: 8

lora_target_linear: true

lora_target_modules:

- q_proj

- v_proj

lr_scheduler: cosine

max_memory:

  0: 70GiB

max_steps: 50

micro_batch_size: 2

mlflow_experiment_name: /tmp/733c43e45c9d282a_train_data.json

model_type: AutoModelForCausalLM

num_epochs: 1

optimizer: adamw_bnb_8bit

output_dir: miner_id_24

pad_to_sequence_len: true

quantization_config:

  llm_int8_enable_fp32_cpu_offload: true

  load_in_8bit: true

resume_from_checkpoint: null

s2_attention: null

sample_packing: false

saves_per_epoch: 4

sequence_len: 512

strict: false

tf32: false

tokenizer_type: AutoTokenizer

torch_compile: true

train_on_inputs: false

trust_remote_code: true

val_set_size: 0.05

wandb_entity: null

wandb_mode: online

wandb_name: a7706e92-133c-4e5d-bca1-aad5a4fc27e6

wandb_project: Gradients-On-Demand

wandb_run: your_name

wandb_runid: a7706e92-133c-4e5d-bca1-aad5a4fc27e6

warmup_steps: 10

weight_decay: 0.0

xformers_attention: null



```

</details><br>

# a7706e92-133c-4e5d-bca1-aad5a4fc27e6

This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5173

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001

- train_batch_size: 2

- eval_batch_size: 2

- seed: 42

- gradient_accumulation_steps: 16

- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10

- training_steps: 50

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.6358        | 0.0001 | 1    | 0.6944          |
| 0.5682        | 0.0019 | 13   | 0.6041          |
| 0.5173        | 0.0039 | 26   | 0.5379          |
| 0.5272        | 0.0058 | 39   | 0.5173          |


### Framework versions

- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1