File size: 4,392 Bytes
ad3c23e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---
language:
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- shining-valiant
- shining-valiant-3
- valiant
- valiant-labs
- qwen
- qwen-3
- qwen-3-4b
- 4b
- reasoning
- code
- code-reasoning
- science
- science-reasoning
- physics
- biology
- chemistry
- earth-science
- astronomy
- machine-learning
- artificial-intelligence
- compsci
- computer-science
- information-theory
- ML-Ops
- math
- cuda
- deep-learning
- transformers
- agentic
- LLM
- neuromorphic
- self-improvement
- complex-systems
- cognition
- linguistics
- philosophy
- logic
- epistemology
- simulation
- game-theory
- knowledge-management
- creativity
- problem-solving
- architect
- engineer
- developer
- creative
- analytical
- expert
- rationality
- conversational
- chat
- instruct
base_model: Qwen/Qwen3-4B
datasets:
- sequelbox/Celestia3-DeepSeek-R1-0528
- sequelbox/Mitakihara-DeepSeek-R1-0528
- sequelbox/Raiden-DeepSeek-R1
license: apache-2.0
---


**[Support our open-source dataset and model releases!](https://huggingface.co/spaces/sequelbox/SupportOpenSource)**


![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/63444f2687964b331809eb55/0-q6i_3FVjPg27esj9rNm.jpeg)

Shining Valiant 3: [Qwen3-1.7B](https://huggingface.co/ValiantLabs/Qwen3-1.7B-ShiningValiant3), [Qwen3-4B](https://huggingface.co/ValiantLabs/Qwen3-4B-ShiningValiant3), [Qwen3-8B](https://huggingface.co/ValiantLabs/Qwen3-8B-ShiningValiant3)


Shining Valiant 3 is a science, AI design, and general reasoning specialist built on Qwen 3.
- Finetuned on our newest [science reasoning](https://huggingface.co/datasets/sequelbox/Celestia3-DeepSeek-R1-0528) data generated with [Deepseek R1 0528!](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528)
- AI to build AI: our [high-difficulty AI reasoning](https://huggingface.co/datasets/sequelbox/Mitakihara-DeepSeek-R1-0528) data makes Shining Valiant 3 your friend for building with current AI tech and discovering new innovations and improvements!
- Improved [general and creative reasoning](https://huggingface.co/datasets/sequelbox/Raiden-DeepSeek-R1) to supplement problem-solving and general chat performance.
- Small model sizes allow running on local desktop and mobile, plus super-fast server inference!


## Prompting Guide
Shining Valiant 3 uses the [Qwen 3](https://huggingface.co/Qwen/Qwen3-4B) prompt format.

Shining Valiant 3 is a reasoning finetune; **we recommend enable_thinking=True for all chats.**

Example inference script to get started:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "ValiantLabs/Qwen3-4B-ShiningValiant3"

# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)

# prepare the model input
prompt = "Propose a novel cognitive architecture where the primary memory component is a Graph Neural Network (GNN). How would this GNN represent working, declarative, and procedural memory? How would the \"cognitive cycle\" be implemented as operations on this graph?"
messages = [
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
    enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

# conduct text completion
generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() 

# parsing thinking content
try:
    # rindex finding 151668 (</think>)
    index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
    index = 0

thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")

print("thinking content:", thinking_content)
print("content:", content)
```


![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/63444f2687964b331809eb55/VCJ8Fmefd8cdVhXSSxJiD.jpeg)


Shining Valiant 3 is created by [Valiant Labs.](http://valiantlabs.ca/)

[Check out our HuggingFace page to see all of our models!](https://huggingface.co/ValiantLabs)

We care about open source. For everyone to use.