Upload denoise_util.py
Browse files- denoise_util.py +410 -0
denoise_util.py
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
# SOURCE: https://github.com/Ascend-Research/CascadedGaze
|
5 |
+
# ------------------------------------------------------------------------
|
6 |
+
# Modified from NAFNet (https://github.com/megvii-research/NAFNet)
|
7 |
+
# ------------------------------------------------------------------------
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
class LayerNormFunction(torch.autograd.Function):
|
11 |
+
@staticmethod
|
12 |
+
def forward(ctx, x, weight, bias, eps):
|
13 |
+
ctx.eps = eps
|
14 |
+
N, C, H, W = x.size()
|
15 |
+
mu = x.mean(1, keepdim=True)
|
16 |
+
var = (x - mu).pow(2).mean(1, keepdim=True)
|
17 |
+
y = (x - mu) / (var + eps).sqrt()
|
18 |
+
ctx.save_for_backward(y, var, weight)
|
19 |
+
y = weight.view(1, C, 1, 1) * y + bias.view(1, C, 1, 1)
|
20 |
+
return y
|
21 |
+
|
22 |
+
@staticmethod
|
23 |
+
def backward(ctx, grad_output):
|
24 |
+
eps = ctx.eps
|
25 |
+
|
26 |
+
N, C, H, W = grad_output.size()
|
27 |
+
y, var, weight = ctx.saved_variables
|
28 |
+
g = grad_output * weight.view(1, C, 1, 1)
|
29 |
+
mean_g = g.mean(dim=1, keepdim=True)
|
30 |
+
|
31 |
+
mean_gy = (g * y).mean(dim=1, keepdim=True)
|
32 |
+
gx = 1. / torch.sqrt(var + eps) * (g - y * mean_gy - mean_g)
|
33 |
+
return gx, (grad_output * y).sum(dim=3).sum(dim=2).sum(dim=0), grad_output.sum(dim=3).sum(dim=2).sum(
|
34 |
+
dim=0), None
|
35 |
+
|
36 |
+
class LayerNorm2d(nn.Module):
|
37 |
+
def __init__(self, channels, eps=1e-6):
|
38 |
+
super(LayerNorm2d, self).__init__()
|
39 |
+
self.register_parameter('weight', nn.Parameter(torch.ones(channels)))
|
40 |
+
self.register_parameter('bias', nn.Parameter(torch.zeros(channels)))
|
41 |
+
self.eps = eps
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
return LayerNormFunction.apply(x, self.weight, self.bias, self.eps)
|
45 |
+
|
46 |
+
class AvgPool2d(nn.Module):
|
47 |
+
def __init__(self, kernel_size=None, base_size=None, auto_pad=True, fast_imp=False, train_size=None):
|
48 |
+
super().__init__()
|
49 |
+
self.kernel_size = kernel_size
|
50 |
+
self.base_size = base_size
|
51 |
+
self.auto_pad = auto_pad
|
52 |
+
|
53 |
+
# only used for fast implementation
|
54 |
+
self.fast_imp = fast_imp
|
55 |
+
self.rs = [5, 4, 3, 2, 1]
|
56 |
+
self.max_r1 = self.rs[0]
|
57 |
+
self.max_r2 = self.rs[0]
|
58 |
+
self.train_size = train_size
|
59 |
+
|
60 |
+
def extra_repr(self) -> str:
|
61 |
+
return 'kernel_size={}, base_size={}, stride={}, fast_imp={}'.format(
|
62 |
+
self.kernel_size, self.base_size, self.kernel_size, self.fast_imp
|
63 |
+
)
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
if self.kernel_size is None and self.base_size:
|
67 |
+
train_size = self.train_size
|
68 |
+
if isinstance(self.base_size, int):
|
69 |
+
self.base_size = (self.base_size, self.base_size)
|
70 |
+
self.kernel_size = list(self.base_size)
|
71 |
+
self.kernel_size[0] = x.shape[2] * self.base_size[0] // train_size[-2]
|
72 |
+
self.kernel_size[1] = x.shape[3] * self.base_size[1] // train_size[-1]
|
73 |
+
|
74 |
+
# only used for fast implementation
|
75 |
+
self.max_r1 = max(1, self.rs[0] * x.shape[2] // train_size[-2])
|
76 |
+
self.max_r2 = max(1, self.rs[0] * x.shape[3] // train_size[-1])
|
77 |
+
|
78 |
+
if self.kernel_size[0] >= x.size(-2) and self.kernel_size[1] >= x.size(-1):
|
79 |
+
return F.adaptive_avg_pool2d(x, 1)
|
80 |
+
|
81 |
+
if self.fast_imp: # Non-equivalent implementation but faster
|
82 |
+
h, w = x.shape[2:]
|
83 |
+
if self.kernel_size[0] >= h and self.kernel_size[1] >= w:
|
84 |
+
out = F.adaptive_avg_pool2d(x, 1)
|
85 |
+
else:
|
86 |
+
r1 = [r for r in self.rs if h % r == 0][0]
|
87 |
+
r2 = [r for r in self.rs if w % r == 0][0]
|
88 |
+
# reduction_constraint
|
89 |
+
r1 = min(self.max_r1, r1)
|
90 |
+
r2 = min(self.max_r2, r2)
|
91 |
+
s = x[:, :, ::r1, ::r2].cumsum(dim=-1).cumsum(dim=-2)
|
92 |
+
n, c, h, w = s.shape
|
93 |
+
k1, k2 = min(h - 1, self.kernel_size[0] // r1), min(w - 1, self.kernel_size[1] // r2)
|
94 |
+
out = (s[:, :, :-k1, :-k2] - s[:, :, :-k1, k2:] - s[:, :, k1:, :-k2] + s[:, :, k1:, k2:]) / (k1 * k2)
|
95 |
+
out = torch.nn.functional.interpolate(out, scale_factor=(r1, r2))
|
96 |
+
else:
|
97 |
+
n, c, h, w = x.shape
|
98 |
+
s = x.cumsum(dim=-1).cumsum_(dim=-2)
|
99 |
+
s = torch.nn.functional.pad(s, (1, 0, 1, 0)) # pad 0 for convenience
|
100 |
+
k1, k2 = min(h, self.kernel_size[0]), min(w, self.kernel_size[1])
|
101 |
+
s1, s2, s3, s4 = s[:, :, :-k1, :-k2], s[:, :, :-k1, k2:], s[:, :, k1:, :-k2], s[:, :, k1:, k2:]
|
102 |
+
out = s4 + s1 - s2 - s3
|
103 |
+
out = out / (k1 * k2)
|
104 |
+
|
105 |
+
if self.auto_pad:
|
106 |
+
n, c, h, w = x.shape
|
107 |
+
_h, _w = out.shape[2:]
|
108 |
+
# print(x.shape, self.kernel_size)
|
109 |
+
pad2d = ((w - _w) // 2, (w - _w + 1) // 2, (h - _h) // 2, (h - _h + 1) // 2)
|
110 |
+
out = torch.nn.functional.pad(out, pad2d, mode='replicate')
|
111 |
+
|
112 |
+
return out
|
113 |
+
|
114 |
+
def replace_layers(model, base_size, train_size, fast_imp, **kwargs):
|
115 |
+
for n, m in model.named_children():
|
116 |
+
if len(list(m.children())) > 0:
|
117 |
+
## compound module, go inside it
|
118 |
+
replace_layers(m, base_size, train_size, fast_imp, **kwargs)
|
119 |
+
|
120 |
+
if isinstance(m, nn.AdaptiveAvgPool2d):
|
121 |
+
# print(base_size)
|
122 |
+
pool = AvgPool2d(base_size=base_size, fast_imp=fast_imp, train_size=train_size)
|
123 |
+
assert m.output_size == 1
|
124 |
+
setattr(model, n, pool)
|
125 |
+
|
126 |
+
'''
|
127 |
+
ref.
|
128 |
+
@article{chu2021tlsc,
|
129 |
+
title={Revisiting Global Statistics Aggregation for Improving Image Restoration},
|
130 |
+
author={Chu, Xiaojie and Chen, Liangyu and and Chen, Chengpeng and Lu, Xin},
|
131 |
+
journal={arXiv preprint arXiv:2112.04491},
|
132 |
+
year={2021}
|
133 |
+
}
|
134 |
+
'''
|
135 |
+
class Local_Base():
|
136 |
+
def convert(self, *args, train_size, **kwargs):
|
137 |
+
replace_layers(self, *args, train_size=train_size, **kwargs)
|
138 |
+
imgs = torch.rand(train_size)
|
139 |
+
with torch.no_grad():
|
140 |
+
self.forward(imgs)
|
141 |
+
|
142 |
+
class SimpleGate(nn.Module):
|
143 |
+
def forward(self, x):
|
144 |
+
x1, x2 = x.chunk(2, dim=1)
|
145 |
+
return x1 * x2
|
146 |
+
|
147 |
+
class depthwise_separable_conv(nn.Module):
|
148 |
+
def __init__(self, nin, nout, kernel_size = 3, padding = 0, stide = 1, bias=False):
|
149 |
+
super(depthwise_separable_conv, self).__init__()
|
150 |
+
self.pointwise = nn.Conv2d(nin, nout, kernel_size=1, bias=bias)
|
151 |
+
self.depthwise = nn.Conv2d(nin, nin, kernel_size=kernel_size, stride=stide, padding=padding, groups=nin, bias=bias)
|
152 |
+
|
153 |
+
def forward(self, x):
|
154 |
+
x = self.depthwise(x)
|
155 |
+
x = self.pointwise(x)
|
156 |
+
return x
|
157 |
+
|
158 |
+
|
159 |
+
class UpsampleWithFlops(nn.Upsample):
|
160 |
+
def __init__(self, size=None, scale_factor=None, mode='nearest', align_corners=None):
|
161 |
+
super(UpsampleWithFlops, self).__init__(size, scale_factor, mode, align_corners)
|
162 |
+
self.__flops__ = 0
|
163 |
+
|
164 |
+
def forward(self, input):
|
165 |
+
self.__flops__ += input.numel()
|
166 |
+
return super(UpsampleWithFlops, self).forward(input)
|
167 |
+
|
168 |
+
|
169 |
+
class GlobalContextExtractor(nn.Module):
|
170 |
+
def __init__(self, c, kernel_sizes=[3, 3, 5], strides=[3, 3, 5], padding=0, bias=False):
|
171 |
+
super(GlobalContextExtractor, self).__init__()
|
172 |
+
|
173 |
+
self.depthwise_separable_convs = nn.ModuleList([
|
174 |
+
depthwise_separable_conv(c, c, kernel_size, padding, stride, bias)
|
175 |
+
for kernel_size, stride in zip(kernel_sizes, strides)
|
176 |
+
])
|
177 |
+
|
178 |
+
def forward(self, x):
|
179 |
+
outputs = []
|
180 |
+
for conv in self.depthwise_separable_convs:
|
181 |
+
x = F.gelu(conv(x))
|
182 |
+
outputs.append(x)
|
183 |
+
return outputs
|
184 |
+
|
185 |
+
|
186 |
+
class CascadedGazeBlock(nn.Module):
|
187 |
+
def __init__(self, c, GCE_Conv =2, DW_Expand=2, FFN_Expand=2, drop_out_rate=0):
|
188 |
+
super().__init__()
|
189 |
+
self.dw_channel = c * DW_Expand
|
190 |
+
self.GCE_Conv = GCE_Conv
|
191 |
+
self.conv1 = nn.Conv2d(in_channels=c, out_channels=self.dw_channel, kernel_size=1,
|
192 |
+
padding=0, stride=1, groups=1, bias=True)
|
193 |
+
self.conv2 = nn.Conv2d(in_channels=self.dw_channel, out_channels=self.dw_channel,
|
194 |
+
kernel_size=3, padding=1, stride=1, groups=self.dw_channel,
|
195 |
+
bias=True)
|
196 |
+
|
197 |
+
|
198 |
+
if self.GCE_Conv == 3:
|
199 |
+
self.GCE = GlobalContextExtractor(c=c, kernel_sizes=[3, 3, 5], strides=[2, 3, 4])
|
200 |
+
|
201 |
+
self.project_out = nn.Conv2d(int(self.dw_channel*2.5), c, kernel_size=1)
|
202 |
+
|
203 |
+
self.sca = nn.Sequential(
|
204 |
+
nn.AdaptiveAvgPool2d(1),
|
205 |
+
nn.Conv2d(in_channels=int(self.dw_channel*2.5), out_channels=int(self.dw_channel*2.5), kernel_size=1, padding=0, stride=1,
|
206 |
+
groups=1, bias=True))
|
207 |
+
else:
|
208 |
+
self.GCE = GlobalContextExtractor(c=c, kernel_sizes=[3, 3], strides=[2, 3])
|
209 |
+
|
210 |
+
self.project_out = nn.Conv2d(self.dw_channel*2, c, kernel_size=1)
|
211 |
+
|
212 |
+
self.sca = nn.Sequential(
|
213 |
+
nn.AdaptiveAvgPool2d(1),
|
214 |
+
nn.Conv2d(in_channels=self.dw_channel*2, out_channels=self.dw_channel*2, kernel_size=1, padding=0, stride=1,
|
215 |
+
groups=1, bias=True))
|
216 |
+
|
217 |
+
|
218 |
+
# SimpleGate
|
219 |
+
self.sg = SimpleGate()
|
220 |
+
|
221 |
+
ffn_channel = FFN_Expand * c
|
222 |
+
self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
|
223 |
+
self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
|
224 |
+
|
225 |
+
self.norm1 = LayerNorm2d(c)
|
226 |
+
self.norm2 = LayerNorm2d(c)
|
227 |
+
|
228 |
+
self.dropout1 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity()
|
229 |
+
self.dropout2 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity()
|
230 |
+
|
231 |
+
self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
|
232 |
+
self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
|
233 |
+
|
234 |
+
def forward(self, inp):
|
235 |
+
x = inp
|
236 |
+
b,c,h,w = x.shape
|
237 |
+
# # Nearest neighbor upsampling as part of the range fusion process
|
238 |
+
self.upsample = UpsampleWithFlops(size=(h,w), mode='nearest')
|
239 |
+
|
240 |
+
|
241 |
+
x = self.norm1(x)
|
242 |
+
x = self.conv1(x)
|
243 |
+
x = self.conv2(x)
|
244 |
+
x = F.gelu(x)
|
245 |
+
|
246 |
+
|
247 |
+
# Global Context Extractor + Range fusion
|
248 |
+
x_1 , x_2 = x.chunk(2, dim=1)
|
249 |
+
if self.GCE_Conv == 3:
|
250 |
+
x1, x2, x3 = self.GCE(x_1 + x_2)
|
251 |
+
x = torch.cat([x, self.upsample(x1), self.upsample(x2), self.upsample(x3)], dim = 1)
|
252 |
+
else:
|
253 |
+
x1, x2 = self.GCE(x_1 + x_2)
|
254 |
+
x = torch.cat([x, self.upsample(x1), self.upsample(x2)], dim = 1)
|
255 |
+
x = self.sca(x) * x
|
256 |
+
x = self.project_out(x)
|
257 |
+
|
258 |
+
|
259 |
+
x = self.dropout1(x)
|
260 |
+
#channel-mixing
|
261 |
+
y = inp + x * self.beta
|
262 |
+
x = self.conv4(self.norm2(y))
|
263 |
+
x = self.sg(x)
|
264 |
+
x = self.conv5(x)
|
265 |
+
x = self.dropout2(x)
|
266 |
+
|
267 |
+
return y + x * self.gamma
|
268 |
+
|
269 |
+
class NAFBlock0(nn.Module):
|
270 |
+
def __init__(self, c, DW_Expand=2, FFN_Expand=2, drop_out_rate=0.0):
|
271 |
+
super().__init__()
|
272 |
+
dw_channel = c * DW_Expand
|
273 |
+
self.conv1 = nn.Conv2d(in_channels=c, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
|
274 |
+
self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel,
|
275 |
+
bias=True)
|
276 |
+
self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
|
277 |
+
|
278 |
+
# Simplified Channel Attention
|
279 |
+
self.sca = nn.Sequential(
|
280 |
+
nn.AdaptiveAvgPool2d(1),
|
281 |
+
nn.Conv2d(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1,
|
282 |
+
groups=1, bias=True),
|
283 |
+
)
|
284 |
+
|
285 |
+
# SimpleGate
|
286 |
+
self.sg = SimpleGate()
|
287 |
+
|
288 |
+
ffn_channel = FFN_Expand * c
|
289 |
+
self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
|
290 |
+
self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
|
291 |
+
|
292 |
+
self.norm1 = LayerNorm2d(c)
|
293 |
+
self.norm2 = LayerNorm2d(c)
|
294 |
+
|
295 |
+
self.dropout1 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity()
|
296 |
+
self.dropout2 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity()
|
297 |
+
|
298 |
+
self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
|
299 |
+
self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
|
300 |
+
|
301 |
+
def forward(self, inp):
|
302 |
+
x = inp
|
303 |
+
|
304 |
+
x = self.norm1(x)
|
305 |
+
|
306 |
+
x = self.conv1(x)
|
307 |
+
x = self.conv2(x)
|
308 |
+
x = self.sg(x)
|
309 |
+
x = x * self.sca(x)
|
310 |
+
x = self.conv3(x)
|
311 |
+
|
312 |
+
x = self.dropout1(x)
|
313 |
+
|
314 |
+
y = inp + x * self.beta
|
315 |
+
|
316 |
+
#Channel Mixing
|
317 |
+
x = self.conv4(self.norm2(y))
|
318 |
+
x = self.sg(x)
|
319 |
+
x = self.conv5(x)
|
320 |
+
|
321 |
+
x = self.dropout2(x)
|
322 |
+
|
323 |
+
return y + x * self.gamma
|
324 |
+
|
325 |
+
|
326 |
+
class CascadedGaze(nn.Module):
|
327 |
+
|
328 |
+
def __init__(self, img_channel=3, width=16, middle_blk_num=1, enc_blk_nums=[], dec_blk_nums=[], GCE_CONVS_nums=[]):
|
329 |
+
super().__init__()
|
330 |
+
|
331 |
+
self.intro = nn.Conv2d(in_channels=img_channel, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1,
|
332 |
+
bias=True)
|
333 |
+
self.ending = nn.Conv2d(in_channels=width, out_channels=img_channel, kernel_size=3, padding=1, stride=1, groups=1,
|
334 |
+
bias=True)
|
335 |
+
|
336 |
+
self.encoders = nn.ModuleList()
|
337 |
+
self.decoders = nn.ModuleList()
|
338 |
+
self.middle_blks = nn.ModuleList()
|
339 |
+
self.ups = nn.ModuleList()
|
340 |
+
self.downs = nn.ModuleList()
|
341 |
+
|
342 |
+
chan = width
|
343 |
+
# for num in enc_blk_nums:
|
344 |
+
for i in range(len(enc_blk_nums)):
|
345 |
+
num = enc_blk_nums[i]
|
346 |
+
GCE_Convs = GCE_CONVS_nums[i]
|
347 |
+
self.encoders.append(
|
348 |
+
nn.Sequential(
|
349 |
+
*[CascadedGazeBlock(chan, GCE_Conv=GCE_Convs) for _ in range(num)]
|
350 |
+
)
|
351 |
+
)
|
352 |
+
self.downs.append(
|
353 |
+
nn.Conv2d(chan, 2*chan, 2, 2)
|
354 |
+
)
|
355 |
+
chan = chan * 2
|
356 |
+
|
357 |
+
self.middle_blks = \
|
358 |
+
nn.Sequential(
|
359 |
+
*[NAFBlock0(chan) for _ in range(middle_blk_num)]
|
360 |
+
)
|
361 |
+
|
362 |
+
for i in range(len(dec_blk_nums)):
|
363 |
+
num = dec_blk_nums[i]
|
364 |
+
self.ups.append(
|
365 |
+
nn.Sequential(
|
366 |
+
nn.Conv2d(chan, chan * 2, 1, bias=False),
|
367 |
+
nn.PixelShuffle(2)
|
368 |
+
)
|
369 |
+
)
|
370 |
+
chan = chan // 2
|
371 |
+
self.decoders.append(
|
372 |
+
nn.Sequential(
|
373 |
+
*[NAFBlock0(chan) for _ in range(num)]
|
374 |
+
)
|
375 |
+
)
|
376 |
+
|
377 |
+
self.padder_size = 2 ** len(self.encoders)
|
378 |
+
|
379 |
+
def forward(self, inp):
|
380 |
+
B, C, H, W = inp.shape
|
381 |
+
inp = self.check_image_size(inp)
|
382 |
+
|
383 |
+
x = self.intro(inp)
|
384 |
+
|
385 |
+
encs = []
|
386 |
+
|
387 |
+
for encoder, down in zip(self.encoders, self.downs):
|
388 |
+
x = encoder(x)
|
389 |
+
encs.append(x)
|
390 |
+
x = down(x)
|
391 |
+
|
392 |
+
x = self.middle_blks(x)
|
393 |
+
|
394 |
+
for decoder, up, enc_skip in zip(self.decoders, self.ups, encs[::-1]):
|
395 |
+
x = up(x)
|
396 |
+
x = x + enc_skip
|
397 |
+
x = decoder(x)
|
398 |
+
|
399 |
+
x = self.ending(x)
|
400 |
+
x = x + inp
|
401 |
+
|
402 |
+
return x[:, :, :H, :W]
|
403 |
+
|
404 |
+
def check_image_size(self, x):
|
405 |
+
_, _, h, w = x.size()
|
406 |
+
mod_pad_h = (self.padder_size - h % self.padder_size) % self.padder_size
|
407 |
+
mod_pad_w = (self.padder_size - w % self.padder_size) % self.padder_size
|
408 |
+
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h))
|
409 |
+
return x
|
410 |
+
|