--- library_name: transformers license: apache-2.0 base_model: sshleifer/distilbart-xsum-6-6 tags: - generated_from_trainer model-index: - name: distilbart-summarization-top-single results: [] --- # distilbart-summarization-top-single This model is a fine-tuned version of [sshleifer/distilbart-xsum-6-6](https://huggingface.co/sshleifer/distilbart-xsum-6-6) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2733 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAFACTOR and the args are: No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.0316 | 0.1882 | 500 | 2.8583 | | 2.6153 | 0.3764 | 1000 | 2.5184 | | 2.5186 | 0.5645 | 1500 | 2.4173 | | 2.4484 | 0.7527 | 2000 | 2.3655 | | 2.4339 | 0.9409 | 2500 | 2.3337 | | 2.3517 | 1.1291 | 3000 | 2.3118 | | 2.32 | 1.3173 | 3500 | 2.2963 | | 2.3265 | 1.5055 | 4000 | 2.2847 | | 2.2928 | 1.6936 | 4500 | 2.2782 | | 2.3653 | 1.8818 | 5000 | 2.2733 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0