Update README.md
Browse files
README.md
CHANGED
@@ -5,7 +5,7 @@ datasets:
|
|
5 |
language:
|
6 |
- en
|
7 |
metrics:
|
8 |
-
|
9 |
|
10 |
|
11 |
tags:
|
@@ -19,7 +19,6 @@ pipeline_tag: image-classification
|
|
19 |
# Install necessary libraries
|
20 |
|
21 |
```python
|
22 |
-
# Import necessary libraries
|
23 |
import os
|
24 |
import torch
|
25 |
import torch.nn as nn
|
@@ -28,9 +27,7 @@ import numpy as np
|
|
28 |
from torch.utils.data import DataLoader
|
29 |
import torchvision.transforms as transforms
|
30 |
import torchvision.datasets as datasets
|
31 |
-
import xgboost as xgb
|
32 |
from sklearn.metrics import accuracy_score, confusion_matrix, ConfusionMatrixDisplay
|
33 |
-
from sklearn.model_selection import train_test_split
|
34 |
import matplotlib.pyplot as plt
|
35 |
from huggingface_hub import hf_hub_download
|
36 |
|
@@ -38,9 +35,8 @@ from huggingface_hub import hf_hub_download
|
|
38 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
39 |
print(f'Using device: {device}')
|
40 |
|
41 |
-
# Define Hugging Face username and repository
|
42 |
username = "Vijayendra"
|
43 |
-
model_name_epoch_125 = "QST-CIFAR10-Epoch125"
|
44 |
model_name_best = "QST-CIFAR10-BestModel"
|
45 |
|
46 |
# Directory where the models will be downloaded
|
@@ -48,13 +44,13 @@ save_dir = './hf_models'
|
|
48 |
os.makedirs(save_dir, exist_ok=True)
|
49 |
|
50 |
# Data normalization for CIFAR-10
|
51 |
-
|
52 |
transforms.ToTensor(),
|
53 |
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2470, 0.2435, 0.2616))
|
54 |
])
|
55 |
|
56 |
# Load CIFAR-10 test set
|
57 |
-
cifar10_test = datasets.CIFAR10(root='./data', train=False, download=True, transform=
|
58 |
test_loader = DataLoader(cifar10_test, batch_size=128, shuffle=False, num_workers=4)
|
59 |
|
60 |
# Define Patch Embedding with optional convolutional layers
|
@@ -91,7 +87,6 @@ class SequentialAttentionBlock(nn.Module):
|
|
91 |
self.dropout = nn.Dropout(dropout)
|
92 |
|
93 |
def forward(self, x):
|
94 |
-
# x shape: [seq_length, batch_size, embed_dim]
|
95 |
seq_length = x.size(0)
|
96 |
attn_mask = torch.triu(torch.ones(seq_length, seq_length), diagonal=1).bool().to(x.device)
|
97 |
attn_output, _ = self.attention(x, x, x, attn_mask=attn_mask)
|
@@ -155,7 +150,6 @@ class CombinedTransformerBlock(nn.Module):
|
|
155 |
ff_output = self.ff(x)
|
156 |
x = self.norm3(x + self.dropout(ff_output))
|
157 |
return x
|
158 |
-
|
159 |
# Decoder Block
|
160 |
class DecoderBlock(nn.Module):
|
161 |
def __init__(self, embed_dim, num_heads, ff_dim, dropout=0.1):
|
@@ -178,8 +172,7 @@ class DecoderBlock(nn.Module):
|
|
178 |
ff_output = self.ff(x)
|
179 |
x = self.norm2(x + self.dropout(ff_output))
|
180 |
return x
|
181 |
-
|
182 |
-
# Custom Transformer Model with increased depth and learnable positional encodings
|
183 |
class CustomTransformer(nn.Module):
|
184 |
def __init__(self, embed_dim, num_heads, ff_dim, num_classes, num_layers=6, dropconnect_p=0.5):
|
185 |
super(CustomTransformer, self).__init__()
|
@@ -189,13 +182,13 @@ class CustomTransformer(nn.Module):
|
|
189 |
self.positional_encoding = nn.Parameter(torch.zeros(1, self.num_patches, embed_dim))
|
190 |
nn.init.trunc_normal_(self.positional_encoding, std=0.02)
|
191 |
|
192 |
-
#
|
193 |
self.encoder_blocks = nn.ModuleList([
|
194 |
CombinedTransformerBlock(embed_dim, num_heads, ff_dim, dropconnect_p=dropconnect_p)
|
195 |
for _ in range(num_layers)
|
196 |
])
|
197 |
-
|
198 |
-
#
|
199 |
self.decoder_blocks = nn.ModuleList([
|
200 |
DecoderBlock(embed_dim, num_heads, ff_dim)
|
201 |
for _ in range(num_layers)
|
@@ -208,10 +201,12 @@ class CustomTransformer(nn.Module):
|
|
208 |
x += self.positional_encoding
|
209 |
x = x.transpose(0, 1) # Shape: [num_patches, batch_size, embed_dim]
|
210 |
|
|
|
211 |
encoder_output = x
|
212 |
for encoder in self.encoder_blocks:
|
213 |
encoder_output = encoder(encoder_output)
|
214 |
|
|
|
215 |
decoder_output = encoder_output
|
216 |
for decoder in self.decoder_blocks:
|
217 |
decoder_output = decoder(decoder_output, encoder_output)
|
@@ -220,95 +215,50 @@ class CustomTransformer(nn.Module):
|
|
220 |
logits = self.fc(decoder_output)
|
221 |
return logits
|
222 |
|
223 |
-
|
|
|
224 |
embed_dim = 512
|
225 |
num_heads = 32
|
226 |
ff_dim = 1024
|
227 |
num_classes = 10
|
228 |
num_layers = 10 # Ensure it matches the architecture
|
229 |
|
230 |
-
model_epoch_125 = CustomTransformer(embed_dim, num_heads, ff_dim, num_classes, num_layers=num_layers).to(device)
|
231 |
model_best = CustomTransformer(embed_dim, num_heads, ff_dim, num_classes, num_layers=num_layers).to(device)
|
232 |
|
233 |
-
# Download the
|
234 |
-
from huggingface_hub import hf_hub_download
|
235 |
-
|
236 |
-
# Paths where the models will be saved
|
237 |
-
model_epoch_125_path = hf_hub_download(repo_id=f"{username}/{model_name_epoch_125}", filename="model_epoch_125.pth")
|
238 |
model_best_path = hf_hub_download(repo_id=f"{username}/{model_name_best}", filename="model_best.pth")
|
239 |
-
|
240 |
-
# Load the saved models from Hugging Face Hub
|
241 |
-
model_epoch_125.load_state_dict(torch.load(model_epoch_125_path, map_location=device))
|
242 |
model_best.load_state_dict(torch.load(model_best_path, map_location=device))
|
|
|
243 |
|
244 |
-
#
|
245 |
-
model_epoch_125.eval()
|
246 |
-
model_best.eval()
|
247 |
-
|
248 |
-
# Prepare the feature and label arrays
|
249 |
-
test_preds_epoch_125 = []
|
250 |
-
test_preds_best = []
|
251 |
test_labels = []
|
|
|
252 |
|
253 |
with torch.no_grad():
|
254 |
for images_test, labels_test in test_loader:
|
255 |
images_test = images_test.to(device)
|
256 |
-
|
257 |
-
# Get predictions from model_epoch_125
|
258 |
-
logits_epoch_125 = model_epoch_125(images_test)
|
259 |
-
probs_epoch_125 = F.softmax(logits_epoch_125, dim=1).cpu().numpy() # Convert to probabilities
|
260 |
-
|
261 |
-
# Get predictions from model_best
|
262 |
logits_best = model_best(images_test)
|
263 |
probs_best = F.softmax(logits_best, dim=1).cpu().numpy() # Convert to probabilities
|
264 |
|
265 |
# Store predictions and labels
|
266 |
-
test_preds_epoch_125.extend(probs_epoch_125)
|
267 |
test_preds_best.extend(probs_best)
|
268 |
test_labels.extend(labels_test.numpy())
|
269 |
|
270 |
-
# Convert predictions to
|
271 |
-
|
272 |
-
test_preds_best = np.array(test_preds_best)
|
273 |
test_labels = np.array(test_labels)
|
274 |
|
275 |
-
#
|
276 |
-
|
277 |
-
|
278 |
-
# Split the data for training and validation of the XGBoost meta-learner
|
279 |
-
X_train, X_val, y_train, y_val = train_test_split(meta_features, test_labels, test_size=0.2, random_state=42)
|
280 |
-
|
281 |
-
# Train an XGBoost classifier as a meta-learner
|
282 |
-
xgb_model = xgb.XGBClassifier(
|
283 |
-
objective='multi:softmax',
|
284 |
-
num_class=10,
|
285 |
-
eval_metric='mlogloss',
|
286 |
-
use_label_encoder=False
|
287 |
-
)
|
288 |
-
|
289 |
-
xgb_model.fit(X_train, y_train)
|
290 |
-
|
291 |
-
# Validate the XGBoost model
|
292 |
-
y_pred_val = xgb_model.predict(X_val)
|
293 |
-
val_accuracy = accuracy_score(y_val, y_pred_val)
|
294 |
-
print(f'Validation Accuracy of Meta-learner: {val_accuracy * 100:.2f}%')
|
295 |
-
|
296 |
-
# Test the XGBoost model on the entire test set
|
297 |
-
y_pred_test = xgb_model.predict(meta_features)
|
298 |
-
test_accuracy = accuracy_score(test_labels, y_pred_test)
|
299 |
-
print(f'Test Accuracy of Meta-learner: {test_accuracy * 100:.2f}%')
|
300 |
|
301 |
# Plot the confusion matrix for the test set predictions
|
302 |
-
cm = confusion_matrix(test_labels,
|
303 |
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=cifar10_test.classes)
|
304 |
disp.plot(cmap=plt.cm.Blues)
|
305 |
|
306 |
# Rotate the x-axis labels to prevent overlapping
|
307 |
plt.xticks(rotation=45, ha='right')
|
308 |
-
plt.title('Confusion Matrix for
|
309 |
-
plt.savefig(os.path.join(save_dir, '
|
310 |
plt.show()
|
311 |
-
|
312 |
-
# Save the XGBoost model
|
313 |
-
xgb_model.save_model(os.path.join(save_dir, 'xgboost_meta_learner.json'))
|
314 |
-
print('Meta-learner model saved.')
|
|
|
5 |
language:
|
6 |
- en
|
7 |
metrics:
|
8 |
+
|
9 |
|
10 |
|
11 |
tags:
|
|
|
19 |
# Install necessary libraries
|
20 |
|
21 |
```python
|
|
|
22 |
import os
|
23 |
import torch
|
24 |
import torch.nn as nn
|
|
|
27 |
from torch.utils.data import DataLoader
|
28 |
import torchvision.transforms as transforms
|
29 |
import torchvision.datasets as datasets
|
|
|
30 |
from sklearn.metrics import accuracy_score, confusion_matrix, ConfusionMatrixDisplay
|
|
|
31 |
import matplotlib.pyplot as plt
|
32 |
from huggingface_hub import hf_hub_download
|
33 |
|
|
|
35 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
36 |
print(f'Using device: {device}')
|
37 |
|
38 |
+
# Define Hugging Face username and repository name for the best model
|
39 |
username = "Vijayendra"
|
|
|
40 |
model_name_best = "QST-CIFAR10-BestModel"
|
41 |
|
42 |
# Directory where the models will be downloaded
|
|
|
44 |
os.makedirs(save_dir, exist_ok=True)
|
45 |
|
46 |
# Data normalization for CIFAR-10
|
47 |
+
transform = transforms.Compose([
|
48 |
transforms.ToTensor(),
|
49 |
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2470, 0.2435, 0.2616))
|
50 |
])
|
51 |
|
52 |
# Load CIFAR-10 test set
|
53 |
+
cifar10_test = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
|
54 |
test_loader = DataLoader(cifar10_test, batch_size=128, shuffle=False, num_workers=4)
|
55 |
|
56 |
# Define Patch Embedding with optional convolutional layers
|
|
|
87 |
self.dropout = nn.Dropout(dropout)
|
88 |
|
89 |
def forward(self, x):
|
|
|
90 |
seq_length = x.size(0)
|
91 |
attn_mask = torch.triu(torch.ones(seq_length, seq_length), diagonal=1).bool().to(x.device)
|
92 |
attn_output, _ = self.attention(x, x, x, attn_mask=attn_mask)
|
|
|
150 |
ff_output = self.ff(x)
|
151 |
x = self.norm3(x + self.dropout(ff_output))
|
152 |
return x
|
|
|
153 |
# Decoder Block
|
154 |
class DecoderBlock(nn.Module):
|
155 |
def __init__(self, embed_dim, num_heads, ff_dim, dropout=0.1):
|
|
|
172 |
ff_output = self.ff(x)
|
173 |
x = self.norm2(x + self.dropout(ff_output))
|
174 |
return x
|
175 |
+
# Custom Transformer Model with increased depth, encoder and decoder blocks, and learnable positional encodings
|
|
|
176 |
class CustomTransformer(nn.Module):
|
177 |
def __init__(self, embed_dim, num_heads, ff_dim, num_classes, num_layers=6, dropconnect_p=0.5):
|
178 |
super(CustomTransformer, self).__init__()
|
|
|
182 |
self.positional_encoding = nn.Parameter(torch.zeros(1, self.num_patches, embed_dim))
|
183 |
nn.init.trunc_normal_(self.positional_encoding, std=0.02)
|
184 |
|
185 |
+
# Encoder blocks
|
186 |
self.encoder_blocks = nn.ModuleList([
|
187 |
CombinedTransformerBlock(embed_dim, num_heads, ff_dim, dropconnect_p=dropconnect_p)
|
188 |
for _ in range(num_layers)
|
189 |
])
|
190 |
+
|
191 |
+
# Decoder blocks to match saved model structure
|
192 |
self.decoder_blocks = nn.ModuleList([
|
193 |
DecoderBlock(embed_dim, num_heads, ff_dim)
|
194 |
for _ in range(num_layers)
|
|
|
201 |
x += self.positional_encoding
|
202 |
x = x.transpose(0, 1) # Shape: [num_patches, batch_size, embed_dim]
|
203 |
|
204 |
+
# Pass through encoder blocks
|
205 |
encoder_output = x
|
206 |
for encoder in self.encoder_blocks:
|
207 |
encoder_output = encoder(encoder_output)
|
208 |
|
209 |
+
# Pass through decoder blocks
|
210 |
decoder_output = encoder_output
|
211 |
for decoder in self.decoder_blocks:
|
212 |
decoder_output = decoder(decoder_output, encoder_output)
|
|
|
215 |
logits = self.fc(decoder_output)
|
216 |
return logits
|
217 |
|
218 |
+
|
219 |
+
# Initialize the best model for evaluation
|
220 |
embed_dim = 512
|
221 |
num_heads = 32
|
222 |
ff_dim = 1024
|
223 |
num_classes = 10
|
224 |
num_layers = 10 # Ensure it matches the architecture
|
225 |
|
|
|
226 |
model_best = CustomTransformer(embed_dim, num_heads, ff_dim, num_classes, num_layers=num_layers).to(device)
|
227 |
|
228 |
+
# Download and load the best model from Hugging Face Hub
|
|
|
|
|
|
|
|
|
229 |
model_best_path = hf_hub_download(repo_id=f"{username}/{model_name_best}", filename="model_best.pth")
|
|
|
|
|
|
|
230 |
model_best.load_state_dict(torch.load(model_best_path, map_location=device))
|
231 |
+
model_best.eval() # Set to evaluation mode
|
232 |
|
233 |
+
# Evaluate the best model directly on the test set
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
test_labels = []
|
235 |
+
test_preds_best = []
|
236 |
|
237 |
with torch.no_grad():
|
238 |
for images_test, labels_test in test_loader:
|
239 |
images_test = images_test.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
logits_best = model_best(images_test)
|
241 |
probs_best = F.softmax(logits_best, dim=1).cpu().numpy() # Convert to probabilities
|
242 |
|
243 |
# Store predictions and labels
|
|
|
244 |
test_preds_best.extend(probs_best)
|
245 |
test_labels.extend(labels_test.numpy())
|
246 |
|
247 |
+
# Convert test set predictions to labels
|
248 |
+
test_preds_best_labels = np.argmax(test_preds_best, axis=1)
|
|
|
249 |
test_labels = np.array(test_labels)
|
250 |
|
251 |
+
# Calculate and print test accuracy
|
252 |
+
test_accuracy = accuracy_score(test_labels, test_preds_best_labels)
|
253 |
+
print(f'Test Accuracy of Best Model: {test_accuracy * 100:.2f}%')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
|
255 |
# Plot the confusion matrix for the test set predictions
|
256 |
+
cm = confusion_matrix(test_labels, test_preds_best_labels)
|
257 |
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=cifar10_test.classes)
|
258 |
disp.plot(cmap=plt.cm.Blues)
|
259 |
|
260 |
# Rotate the x-axis labels to prevent overlapping
|
261 |
plt.xticks(rotation=45, ha='right')
|
262 |
+
plt.title('Confusion Matrix for Best Model on CIFAR-10 Test Set')
|
263 |
+
plt.savefig(os.path.join(save_dir, 'best_model_confusion_matrix.png'))
|
264 |
plt.show()
|
|
|
|
|
|
|
|