Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- uoft-cs/cifar10
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
metrics:
|
8 |
+
- accuracy:96.7 %
|
9 |
+
---
|
10 |
+
|
11 |
+
|
12 |
+
# Install necessary libraries
|
13 |
+
|
14 |
+
```python
|
15 |
+
# Import necessary libraries
|
16 |
+
import os
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torch.nn.functional as F
|
20 |
+
import numpy as np
|
21 |
+
from torch.utils.data import DataLoader
|
22 |
+
import torchvision.transforms as transforms
|
23 |
+
import torchvision.datasets as datasets
|
24 |
+
import xgboost as xgb
|
25 |
+
from sklearn.metrics import accuracy_score, confusion_matrix, ConfusionMatrixDisplay
|
26 |
+
from sklearn.model_selection import train_test_split
|
27 |
+
import matplotlib.pyplot as plt
|
28 |
+
from huggingface_hub import hf_hub_download
|
29 |
+
|
30 |
+
# Set device to GPU if available
|
31 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
32 |
+
print(f'Using device: {device}')
|
33 |
+
|
34 |
+
# Define your Hugging Face username and repository names
|
35 |
+
username = "Vijayendra" # Replace with your actual Hugging Face username
|
36 |
+
model_name_epoch_125 = "QST-CIFAR10-Epoch125"
|
37 |
+
model_name_best = "QST-CIFAR10-BestModel"
|
38 |
+
|
39 |
+
# Directory where the models will be downloaded
|
40 |
+
save_dir = './hf_models'
|
41 |
+
os.makedirs(save_dir, exist_ok=True)
|
42 |
+
|
43 |
+
# Data normalization for CIFAR-10
|
44 |
+
transform_test = transforms.Compose([
|
45 |
+
transforms.ToTensor(),
|
46 |
+
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2470, 0.2435, 0.2616))
|
47 |
+
])
|
48 |
+
|
49 |
+
# Load CIFAR-10 test set
|
50 |
+
cifar10_test = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
|
51 |
+
test_loader = DataLoader(cifar10_test, batch_size=128, shuffle=False, num_workers=4)
|
52 |
+
|
53 |
+
# Define Patch Embedding with optional convolutional layers
|
54 |
+
class PatchEmbedding(nn.Module):
|
55 |
+
def __init__(self, img_size=32, patch_size=4, in_channels=3, embed_dim=256):
|
56 |
+
super(PatchEmbedding, self).__init__()
|
57 |
+
self.img_size = img_size
|
58 |
+
self.patch_size = patch_size
|
59 |
+
self.num_patches = (img_size // patch_size) ** 2
|
60 |
+
self.embed_dim = embed_dim
|
61 |
+
self.conv_layers = nn.Sequential(
|
62 |
+
nn.Conv2d(in_channels, embed_dim // 2, kernel_size=3, stride=1, padding=1),
|
63 |
+
nn.BatchNorm2d(embed_dim // 2),
|
64 |
+
nn.ReLU(),
|
65 |
+
nn.Conv2d(embed_dim // 2, embed_dim, kernel_size=3, stride=1, padding=1),
|
66 |
+
nn.BatchNorm2d(embed_dim),
|
67 |
+
nn.ReLU(),
|
68 |
+
)
|
69 |
+
self.proj = nn.Conv2d(embed_dim, embed_dim, kernel_size=patch_size, stride=patch_size)
|
70 |
+
|
71 |
+
def forward(self, x):
|
72 |
+
x = self.conv_layers(x)
|
73 |
+
x = self.proj(x) # Shape: [batch_size, embed_dim, num_patches_root, num_patches_root]
|
74 |
+
x = x.flatten(2) # Shape: [batch_size, embed_dim, num_patches]
|
75 |
+
x = x.transpose(1, 2) # Shape: [batch_size, num_patches, embed_dim]
|
76 |
+
return x
|
77 |
+
|
78 |
+
# Sequential Attention Block
|
79 |
+
class SequentialAttentionBlock(nn.Module):
|
80 |
+
def __init__(self, embed_dim, num_heads, dropout=0.1):
|
81 |
+
super(SequentialAttentionBlock, self).__init__()
|
82 |
+
self.attention = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout)
|
83 |
+
self.norm = nn.LayerNorm(embed_dim)
|
84 |
+
self.dropout = nn.Dropout(dropout)
|
85 |
+
|
86 |
+
def forward(self, x):
|
87 |
+
# x shape: [seq_length, batch_size, embed_dim]
|
88 |
+
seq_length = x.size(0)
|
89 |
+
attn_mask = torch.triu(torch.ones(seq_length, seq_length), diagonal=1).bool().to(x.device)
|
90 |
+
attn_output, _ = self.attention(x, x, x, attn_mask=attn_mask)
|
91 |
+
x = self.norm(x + attn_output)
|
92 |
+
return self.dropout(x)
|
93 |
+
|
94 |
+
# Cyclic Attention Block with CRF
|
95 |
+
class CyclicAttentionBlockCRF(nn.Module):
|
96 |
+
def __init__(self, embed_dim, num_heads, dropout=0.1):
|
97 |
+
super(CyclicAttentionBlockCRF, self).__init__()
|
98 |
+
self.attention = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout)
|
99 |
+
self.norm = nn.LayerNorm(embed_dim)
|
100 |
+
self.dropout = nn.Dropout(dropout)
|
101 |
+
self.cyclic_operator = nn.Linear(embed_dim, embed_dim, bias=False)
|
102 |
+
|
103 |
+
def forward(self, x):
|
104 |
+
attn_output, _ = self.attention(x, x, x)
|
105 |
+
x = self.norm(x + attn_output)
|
106 |
+
cyclic_term = self.cyclic_alignment(attn_output)
|
107 |
+
x = self.norm(x + cyclic_term)
|
108 |
+
return self.dropout(x)
|
109 |
+
|
110 |
+
def cyclic_alignment(self, attn_output):
|
111 |
+
cyclic_term = self.cyclic_operator(attn_output)
|
112 |
+
cyclic_term = torch.roll(cyclic_term, shifts=1, dims=0)
|
113 |
+
return cyclic_term
|
114 |
+
|
115 |
+
# Combined Transformer Block with additional multi-headed self-attention and sequential attention
|
116 |
+
class CombinedTransformerBlock(nn.Module):
|
117 |
+
def __init__(self, embed_dim, num_heads, ff_dim, dropout=0.1, dropconnect_p=0.5):
|
118 |
+
super(CombinedTransformerBlock, self).__init__()
|
119 |
+
self.initial_attention = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropconnect_p)
|
120 |
+
self.norm0 = nn.LayerNorm(embed_dim)
|
121 |
+
|
122 |
+
self.attention1 = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropconnect_p)
|
123 |
+
self.norm1 = nn.LayerNorm(embed_dim)
|
124 |
+
self.dropconnect = nn.Dropout(dropconnect_p)
|
125 |
+
self.cyclic_attention = CyclicAttentionBlockCRF(embed_dim, num_heads, dropout)
|
126 |
+
self.sequential_attention = SequentialAttentionBlock(embed_dim, num_heads, dropout)
|
127 |
+
self.attention2 = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropconnect_p)
|
128 |
+
self.norm2 = nn.LayerNorm(embed_dim)
|
129 |
+
self.ff = nn.Sequential(
|
130 |
+
nn.Linear(embed_dim, ff_dim),
|
131 |
+
nn.ReLU(),
|
132 |
+
nn.Linear(ff_dim, embed_dim)
|
133 |
+
)
|
134 |
+
self.norm3 = nn.LayerNorm(embed_dim)
|
135 |
+
self.dropout = nn.Dropout(dropout)
|
136 |
+
|
137 |
+
def forward(self, x):
|
138 |
+
attn_output, _ = self.initial_attention(x, x, x)
|
139 |
+
x = self.norm0(x + attn_output)
|
140 |
+
|
141 |
+
attn_output, _ = self.attention1(x, x, x)
|
142 |
+
x = self.norm1(x + attn_output)
|
143 |
+
x = self.dropconnect(x)
|
144 |
+
x = self.cyclic_attention(x)
|
145 |
+
x = self.sequential_attention(x)
|
146 |
+
attn_output, _ = self.attention2(x, x, x)
|
147 |
+
x = self.norm2(x + attn_output)
|
148 |
+
ff_output = self.ff(x)
|
149 |
+
x = self.norm3(x + self.dropout(ff_output))
|
150 |
+
return x
|
151 |
+
|
152 |
+
# Decoder Block
|
153 |
+
class DecoderBlock(nn.Module):
|
154 |
+
def __init__(self, embed_dim, num_heads, ff_dim, dropout=0.1):
|
155 |
+
super(DecoderBlock, self).__init__()
|
156 |
+
self.attention = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout)
|
157 |
+
self.norm1 = nn.LayerNorm(embed_dim)
|
158 |
+
self.cyclic_attention = CyclicAttentionBlockCRF(embed_dim, num_heads, dropout)
|
159 |
+
self.ff = nn.Sequential(
|
160 |
+
nn.Linear(embed_dim, ff_dim),
|
161 |
+
nn.ReLU(),
|
162 |
+
nn.Linear(ff_dim, embed_dim)
|
163 |
+
)
|
164 |
+
self.norm2 = nn.LayerNorm(embed_dim)
|
165 |
+
self.dropout = nn.Dropout(dropout)
|
166 |
+
|
167 |
+
def forward(self, x, encoder_output):
|
168 |
+
attn_output, _ = self.attention(x, encoder_output, encoder_output)
|
169 |
+
x = self.norm1(x + attn_output)
|
170 |
+
x = self.cyclic_attention(x)
|
171 |
+
ff_output = self.ff(x)
|
172 |
+
x = self.norm2(x + self.dropout(ff_output))
|
173 |
+
return x
|
174 |
+
|
175 |
+
# Custom Transformer Model with increased depth and learnable positional encodings
|
176 |
+
class CustomTransformer(nn.Module):
|
177 |
+
def __init__(self, embed_dim, num_heads, ff_dim, num_classes, num_layers=6, dropconnect_p=0.5):
|
178 |
+
super(CustomTransformer, self).__init__()
|
179 |
+
self.embed_dim = embed_dim
|
180 |
+
self.num_patches = (32 // 4) ** 2 # Assuming patch_size=4
|
181 |
+
self.patch_embedding = PatchEmbedding(embed_dim=embed_dim)
|
182 |
+
self.positional_encoding = nn.Parameter(torch.zeros(1, self.num_patches, embed_dim))
|
183 |
+
nn.init.trunc_normal_(self.positional_encoding, std=0.02)
|
184 |
+
|
185 |
+
# Create multiple encoder blocks
|
186 |
+
self.encoder_blocks = nn.ModuleList([
|
187 |
+
CombinedTransformerBlock(embed_dim, num_heads, ff_dim, dropconnect_p=dropconnect_p)
|
188 |
+
for _ in range(num_layers)
|
189 |
+
])
|
190 |
+
|
191 |
+
# Create multiple decoder blocks
|
192 |
+
self.decoder_blocks = nn.ModuleList([
|
193 |
+
DecoderBlock(embed_dim, num_heads, ff_dim)
|
194 |
+
for _ in range(num_layers)
|
195 |
+
])
|
196 |
+
|
197 |
+
self.fc = nn.Linear(embed_dim, num_classes)
|
198 |
+
|
199 |
+
def forward(self, x):
|
200 |
+
x = self.patch_embedding(x) # Shape: [batch_size, num_patches, embed_dim]
|
201 |
+
x += self.positional_encoding
|
202 |
+
x = x.transpose(0, 1) # Shape: [num_patches, batch_size, embed_dim]
|
203 |
+
|
204 |
+
encoder_output = x
|
205 |
+
for encoder in self.encoder_blocks:
|
206 |
+
encoder_output = encoder(encoder_output)
|
207 |
+
|
208 |
+
decoder_output = encoder_output
|
209 |
+
for decoder in self.decoder_blocks:
|
210 |
+
decoder_output = decoder(decoder_output, encoder_output)
|
211 |
+
|
212 |
+
decoder_output = decoder_output.mean(dim=0) # Shape: [batch_size, embed_dim]
|
213 |
+
logits = self.fc(decoder_output)
|
214 |
+
return logits
|
215 |
+
|
216 |
+
# Initialize two instances of the model for 'model_epoch_125' and 'best_model'
|
217 |
+
embed_dim = 512
|
218 |
+
num_heads = 32
|
219 |
+
ff_dim = 1024
|
220 |
+
num_classes = 10
|
221 |
+
num_layers = 10 # Ensure it matches the architecture
|
222 |
+
|
223 |
+
model_epoch_125 = CustomTransformer(embed_dim, num_heads, ff_dim, num_classes, num_layers=num_layers).to(device)
|
224 |
+
model_best = CustomTransformer(embed_dim, num_heads, ff_dim, num_classes, num_layers=num_layers).to(device)
|
225 |
+
|
226 |
+
# Download the models from Hugging Face Hub
|
227 |
+
from huggingface_hub import hf_hub_download
|
228 |
+
|
229 |
+
# Paths where the models will be saved
|
230 |
+
model_epoch_125_path = hf_hub_download(repo_id=f"{username}/{model_name_epoch_125}", filename="model_epoch_125.pth")
|
231 |
+
model_best_path = hf_hub_download(repo_id=f"{username}/{model_name_best}", filename="model_best.pth")
|
232 |
+
|
233 |
+
# Load the saved models from Hugging Face Hub
|
234 |
+
model_epoch_125.load_state_dict(torch.load(model_epoch_125_path, map_location=device))
|
235 |
+
model_best.load_state_dict(torch.load(model_best_path, map_location=device))
|
236 |
+
|
237 |
+
# Set both models to evaluation mode
|
238 |
+
model_epoch_125.eval()
|
239 |
+
model_best.eval()
|
240 |
+
|
241 |
+
# Prepare the feature and label arrays
|
242 |
+
test_preds_epoch_125 = []
|
243 |
+
test_preds_best = []
|
244 |
+
test_labels = []
|
245 |
+
|
246 |
+
with torch.no_grad():
|
247 |
+
for images_test, labels_test in test_loader:
|
248 |
+
images_test = images_test.to(device)
|
249 |
+
|
250 |
+
# Get predictions from model_epoch_125
|
251 |
+
logits_epoch_125 = model_epoch_125(images_test)
|
252 |
+
probs_epoch_125 = F.softmax(logits_epoch_125, dim=1).cpu().numpy() # Convert to probabilities
|
253 |
+
|
254 |
+
# Get predictions from model_best
|
255 |
+
logits_best = model_best(images_test)
|
256 |
+
probs_best = F.softmax(logits_best, dim=1).cpu().numpy() # Convert to probabilities
|
257 |
+
|
258 |
+
# Store predictions and labels
|
259 |
+
test_preds_epoch_125.extend(probs_epoch_125)
|
260 |
+
test_preds_best.extend(probs_best)
|
261 |
+
test_labels.extend(labels_test.numpy())
|
262 |
+
|
263 |
+
# Convert predictions to NumPy arrays
|
264 |
+
test_preds_epoch_125 = np.array(test_preds_epoch_125)
|
265 |
+
test_preds_best = np.array(test_preds_best)
|
266 |
+
test_labels = np.array(test_labels)
|
267 |
+
|
268 |
+
# Stack the predictions from both models to create meta-features
|
269 |
+
meta_features = np.hstack((test_preds_epoch_125, test_preds_best)) # Shape: (num_samples, 20)
|
270 |
+
|
271 |
+
# Split the data for training and validation of the XGBoost meta-learner
|
272 |
+
X_train, X_val, y_train, y_val = train_test_split(meta_features, test_labels, test_size=0.2, random_state=42)
|
273 |
+
|
274 |
+
# Train an XGBoost classifier as a meta-learner
|
275 |
+
xgb_model = xgb.XGBClassifier(
|
276 |
+
objective='multi:softmax',
|
277 |
+
num_class=10,
|
278 |
+
eval_metric='mlogloss',
|
279 |
+
use_label_encoder=False
|
280 |
+
)
|
281 |
+
|
282 |
+
xgb_model.fit(X_train, y_train)
|
283 |
+
|
284 |
+
# Validate the XGBoost model
|
285 |
+
y_pred_val = xgb_model.predict(X_val)
|
286 |
+
val_accuracy = accuracy_score(y_val, y_pred_val)
|
287 |
+
print(f'Validation Accuracy of Meta-learner: {val_accuracy * 100:.2f}%')
|
288 |
+
|
289 |
+
# Test the XGBoost model on the entire test set
|
290 |
+
y_pred_test = xgb_model.predict(meta_features)
|
291 |
+
test_accuracy = accuracy_score(test_labels, y_pred_test)
|
292 |
+
print(f'Test Accuracy of Meta-learner: {test_accuracy * 100:.2f}%')
|
293 |
+
|
294 |
+
# Plot the confusion matrix for the test set predictions
|
295 |
+
cm = confusion_matrix(test_labels, y_pred_test)
|
296 |
+
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=cifar10_test.classes)
|
297 |
+
disp.plot(cmap=plt.cm.Blues)
|
298 |
+
|
299 |
+
# Rotate the x-axis labels to prevent overlapping
|
300 |
+
plt.xticks(rotation=45, ha='right')
|
301 |
+
plt.title('Confusion Matrix for XGBoost Meta-learner on CIFAR-10 Test Set')
|
302 |
+
plt.savefig(os.path.join(save_dir, 'xgboost_meta_confusion_matrix.png'))
|
303 |
+
plt.show()
|
304 |
+
|
305 |
+
# Save the XGBoost model
|
306 |
+
xgb_model.save_model(os.path.join(save_dir, 'xgboost_meta_learner.json'))
|
307 |
+
print('Meta-learner model saved.')
|
308 |
+
|