--- license: mit tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: DeBERTa-finetuned-ner-conll2003 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9516691579471849 - name: Recall type: recall value: 0.9643217771794009 - name: F1 type: f1 value: 0.9579536905458497 - name: Accuracy type: accuracy value: 0.9914139088097901 --- # DeBERTa-finetuned-ner-conll2003 This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0406 - Precision: 0.9517 - Recall: 0.9643 - F1: 0.9580 - Accuracy: 0.9914 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0597 | 1.0 | 1756 | 0.0486 | 0.9316 | 0.9493 | 0.9404 | 0.9884 | | 0.0286 | 2.0 | 3512 | 0.0413 | 0.9479 | 0.9606 | 0.9542 | 0.9908 | | 0.0173 | 3.0 | 5268 | 0.0406 | 0.9517 | 0.9643 | 0.9580 | 0.9914 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3