from transformers import AutoModelForSeq2SeqLM, AutoTokenizer from rdflib import Graph from datasets import load_dataset from transformers import pipeline from transformers import TextQueryProcessor, QuestionAnswerer from gradio import Interface # Define specializations and subfields SPECIALIZATIONS = { "Science": {"subfields": ["Physics", "Biology", "Chemistry"]}, "History": {"subfields": ["Ancient", "Medieval", "Modern"]}, "Art": {"subfields": ["Literature", "Visual", "Music"]}, } # Define knowledge graph for each specialization knowledge_graphs = { specialization: Graph() for specialization in SPECIALIZATIONS.keys() } # Define Hugging Face models and pipelines model_names = { "Physics": "allenai/bart-large-cc2", "Biology": "bert-base-uncased-finetuned-squad", "Chemistry": "allenai/biobert-base", "Ancient": "facebook/bart-base-uncased-cnn", "Medieval": "distilbert-base-uncased-finetuned-squad", "Modern": "allenai/longformer-base-4096", "Literature": "gpt2-large", "Visual": "autoencoder/bart-encoder", "Music": "openai/music-gpt", } models = { specialization: AutoModelForSeq2SeqLM.from_pretrained(model_names[specialization]) for specialization in model_names.keys() } tokenizers = { specialization: AutoTokenizer.from_pretrained(model_names[specialization]) for specialization in model_names.keys() } qa_processor = TextQueryProcessor.from_pretrained("allenai/bart-large") qa_model = QuestionAnswerer.from_pretrained("allenai/bart-large") # Generation pipeline for creative text formats generation_pipeline = pipeline("text-generation", model="gpt2", top_k=5) # Interactive interface interface = Interface( fn=interact, inputs=["text", "specialization"], outputs=["text"], title="AI Chatbot Civilization", description="Interact with a generation of chatbots!", ) def interact(text, specialization): """Interact with a chatbot based on prompt and specialization.""" # Choose a chatbot from the current generation chatbot = Chatbot(specialization) # Process the prompt and identify relevant knowledge processed_prompt = process_prompt(text, specialization) # Generate response using specialization model response = models[specialization].generate( input_ids=tokenizers[specialization]( processed_prompt, return_tensors="pt" ).input_ids ) # Check for knowledge graph consultation request if response.sequences[0].decode() == "Consult": # Use QA model and knowledge graph to answer question answer = qa_model(qa_processor(text, knowledge_graphs[specialization])) return answer["answer"] # Use generation pipeline for creative formats if need_creative_format(text): return generation_pipeline(text, max_length=50) return response.sequences[0].decode() def process_prompt(text, specialization): """Preprocess prompt based on specialization and subfield.""" # Use subfield-specific data and techniques here # Example: extract chemical equations for "Chemistry" prompts return text def need_creative_format(text): """Check if prompt requires creative text generation.""" # Use keywords, patterns, or other techniques to identify # Example: "Write a poem about..." or "Compose a melody like..." return False def learn(data, specialization): """Update knowledge graph and fine-tune model based on data.""" # Use RDF and Hugging Face datasets/fine-tuning techniques # Update knowledge_graphs and models dictionaries pass def mutate(chatbot): """Create a new chatbot with potentially mutated specialization.""" # Implement logic for specialization mutation based on generation # Update chatbot.specialization and potentially subfield pass # Generate the first generation chatbots = [Chatbot(specialization) for specialization in SPECIALIZATIONS.keys()] # Simulate generations with learning, interaction