File size: 11,342 Bytes
94d1a3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
"""
Fine-Tune SantaCoder on code/text dataset
"""
# copied from https://github.com/loubnabnl/santacoder-finetuning
# removed all parts related to FIM
# set --subset to default to None instead of "data" to avoid issues with my own datasets.
# added --resume_from_checkpoint to resume training from a checkpoint (untested)


import argparse
import os
import random
import sys

import numpy as np
import torch
from datasets import load_dataset
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    Trainer,
    TrainingArguments,
    logging,
    set_seed,
)

# import fim


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--resume_from_checkpoint", type=str, default=None) #can pass a checkpoint dir to resume training
    parser.add_argument("--model_path", type=str, default="bigcode/santacoder")
    parser.add_argument("--dataset_name", type=str, default="bigcode/the-stack-dedup")
    parser.add_argument("--subset", type=str, default=None) #None a bodge but not the solution
    parser.add_argument("--split", type=str, default="train")
    parser.add_argument("--size_valid_set", type=int, default=4000)
    parser.add_argument("--streaming", action="store_true")
    parser.add_argument("--shuffle_buffer", type=int, default=5000)
    parser.add_argument("--data_column", type=str, default="content")

    parser.add_argument("--seq_length", type=int, default=1024)
    parser.add_argument("--max_steps", type=int, default=10000)
    parser.add_argument("--batch_size", type=int, default=2)
    parser.add_argument("--gradient_accumulation_steps", type=int, default=8)
    parser.add_argument("--eos_token_id", type=int, default=49152)

    parser.add_argument("--learning_rate", type=float, default=5e-5)
    parser.add_argument("--lr_scheduler_type", type=str, default="cosine")
    parser.add_argument("--num_warmup_steps", type=int, default=100)
    parser.add_argument("--weight_decay", type=float, default=0.05)

    parser.add_argument("--local_rank", type=int, default=0)
    parser.add_argument("--no_fp16", action="store_false")
    parser.add_argument("--bf16", action="store_true")
    parser.add_argument("--no_gradient_checkpointing", action="store_false")
    parser.add_argument("--seed", type=int, default=0)
    parser.add_argument("--num_workers", type=int, default=None)
    parser.add_argument("--output_dir", type=str, default="./checkpoints")
    parser.add_argument("--log_freq", default=1, type=int)
    parser.add_argument("--eval_freq", default=1000, type=int)
    parser.add_argument("--save_freq", default=1000, type=int)

    # parser.add_argument("--fim_rate", type=float, default=0)
    # parser.add_argument("--fim_spm_rate", type=float, default=0)
    return parser.parse_args()


def chars_token_ratio(dataset, tokenizer, data_column, nb_examples=400):
    """
    Estimate the average number of characters per token in the dataset.
    """
    total_characters, total_tokens = 0, 0
    for _, example in tqdm(zip(range(nb_examples), iter(dataset)), total=nb_examples):
        total_characters += len(example[data_column])
        total_tokens += len(tokenizer(example[data_column]).tokens())

    return total_characters / total_tokens


class ConstantLengthDataset(IterableDataset):
    """
    Iterable dataset that returns constant length chunks of tokens from stream of text files.
        Args:
            tokenizer (Tokenizer): The processor used for proccessing the data.
            dataset (dataset.Dataset): Dataset with text files.
            infinite (bool): If True the iterator is reset after dataset reaches end else stops.
            seq_length (int): Length of token sequences to return.
            num_of_sequences (int): Number of token sequences to keep in buffer.
            chars_per_token (int): Number of characters per token used to estimate number of tokens in text buffer.
            # fim_rate (float): Rate (0.0 to 1.0) that sample will be permuted with FIM.
            # fim_spm_rate (float): Rate (0.0 to 1.0) of FIM permuations that will use SPM.
            seed (int): Seed for random number generator.
    """

    def __init__(
        self,
        tokenizer,
        dataset,
        infinite=False,
        seq_length=1024,
        num_of_sequences=1024,
        chars_per_token=3.6,
        content_field="content",
        # fim_rate=0.5,
        # fim_spm_rate=0.5,
        seed=0,
    ):
        self.tokenizer = tokenizer
        self.concat_token_id = (
            tokenizer.eos_token_id if tokenizer.eos_token_id else args.eos_token_id
        )
        self.dataset = dataset
        self.seq_length = seq_length
        self.infinite = infinite
        self.current_size = 0
        self.max_buffer_size = seq_length * chars_per_token * num_of_sequences
        self.content_field = content_field
        # self.fim_rate = fim_rate
        # self.fim_spm_rate = fim_spm_rate
        self.seed = seed

        # (
        #     self.suffix_tok_id,
        #     self.prefix_tok_id,
        #     self.middle_tok_id,
        #     self.pad_tok_id,
        # ) = fim.get_fim_token_ids(self.tokenizer)
        # if not self.suffix_tok_id and self.fim_rate > 0:
        #     print("FIM is not supported by tokenizer, disabling FIM")
        #     self.fim_rate = 0

    def __iter__(self):
        iterator = iter(self.dataset)
        more_examples = True
        while more_examples:
            buffer, buffer_len = [], 0
            while True:
                if buffer_len >= self.max_buffer_size:
                    break
                try:
                    buffer.append(next(iterator)[self.content_field])
                    buffer_len += len(buffer[-1])
                except StopIteration:
                    if self.infinite:
                        iterator = iter(self.dataset)
                    else:
                        more_examples = False
                        break
            tokenized_inputs = self.tokenizer(buffer, truncation=False)["input_ids"]
            all_token_ids = []

            np_rng = np.random.RandomState(seed=self.seed)
            for tokenized_input in tokenized_inputs:
                # optionally do FIM permutations
                # if self.fim_rate > 0:
                #     tokenized_input, np_rng = fim.permute(
                #         tokenized_input,
                #         np_rng,
                #         self.suffix_tok_id,
                #         self.prefix_tok_id,
                #         self.middle_tok_id,
                #         self.pad_tok_id,
                #         fim_rate=self.fim_rate,
                #         fim_spm_rate=self.fim_spm_rate,
                #         truncate_or_pad=False,
                #     )

                all_token_ids.extend(tokenized_input + [self.concat_token_id])
            examples = []
            for i in range(0, len(all_token_ids), self.seq_length):
                input_ids = all_token_ids[i : i + self.seq_length]
                if len(input_ids) == self.seq_length:
                    examples.append(input_ids)
            random.shuffle(examples)
            for example in examples:
                self.current_size += 1
                yield {
                        "input_ids": torch.LongTensor(example),
                        "labels": torch.LongTensor(example),
                    }

def create_datasets(tokenizer, args):
    dataset = load_dataset(
        args.dataset_name,
        data_dir=args.subset,
        split=args.split,
        use_auth_token=True,
        num_proc=args.num_workers if not args.streaming else None,
        streaming=args.streaming,
    )
    if args.streaming:
        print("Loading the dataset in streaming mode")
        valid_data = dataset.take(args.size_valid_set)
        train_data = dataset.skip(args.size_valid_set)
        train_data = train_data.shuffle(buffer_size=args.shuffle_buffer, seed=args.seed)
    else:
        dataset = dataset.train_test_split(test_size=0.005, seed=args.seed)
        train_data = dataset["train"]
        valid_data = dataset["test"]
        print(
            f"Size of the train set: {len(train_data)}. Size of the validation set: {len(valid_data)}"
        )
    chars_per_token = chars_token_ratio(train_data, tokenizer, args.data_column)
    print(f"The character to token ratio of the dataset is: {chars_per_token:.2f}")
    train_dataset = ConstantLengthDataset(
        tokenizer,
        train_data,
        infinite=True,
        seq_length=args.seq_length,
        chars_per_token=chars_per_token,
        content_field=args.data_column,
        # fim_rate=args.fim_rate,
        # fim_spm_rate=args.fim_spm_rate,
        seed=args.seed,
    )
    valid_dataset = ConstantLengthDataset(
        tokenizer,
        valid_data,
        infinite=False,
        seq_length=args.seq_length,
        chars_per_token=chars_per_token,
        content_field=args.data_column,
        # fim_rate=args.fim_rate,
        # fim_spm_rate=args.fim_spm_rate,
        seed=args.seed,
    )

    return train_dataset, valid_dataset


def run_training(args, train_data, val_data):
    print("Loading the model")
    # disable caching mechanism when using gradient checkpointing
    model = AutoModelForCausalLM.from_pretrained(
        args.model_path,
        trust_remote_code=True,
        use_cache=not args.no_gradient_checkpointing,
    )
    train_data.start_iteration = 0

    print(f"Starting main loop")

    training_args = TrainingArguments(
        output_dir=args.output_dir,
        dataloader_drop_last=True,
        evaluation_strategy="steps",
        max_steps=args.max_steps,
        eval_steps=args.eval_freq,
        save_steps=args.save_freq,
        logging_steps=args.log_freq,
        per_device_train_batch_size=args.batch_size,
        per_device_eval_batch_size=args.batch_size,
        learning_rate=args.learning_rate,
        lr_scheduler_type=args.lr_scheduler_type,
        warmup_steps=args.num_warmup_steps,
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        gradient_checkpointing=args.no_gradient_checkpointing,
        fp16=args.no_fp16,
        bf16=args.bf16,
        weight_decay=args.weight_decay,
        run_name=f"santacoder-{args.subset}",
        # report_to="wandb", #I am not using that, so I just comment it out to avoid errors?
    )

    trainer = Trainer(
        model=model, args=training_args, train_dataset=train_data, eval_dataset=val_data
    )

    print("Training...")
    trainer.train(args.resume_from_checkpoint) #can resume here

    print("Saving last checkpoint of the model")
    model.save_pretrained(os.path.join(args.output_dir, "final_checkpoint/"))


def main(args):
    tokenizer = AutoTokenizer.from_pretrained(args.model_path, use_auth_token=True)

    train_dataset, eval_dataset = create_datasets(tokenizer, args)

    run_training(args, train_dataset, eval_dataset)


if __name__ == "__main__":
    print(sys.argv) #to abort early
    args = get_args()
    print(args) #see if the file actually red?
    set_seed(args.seed)
    os.makedirs(args.output_dir, exist_ok=True)

    logging.set_verbosity_info() #lower verbosity

    main(args)