Commit
·
0123efb
1
Parent(s):
81fb41a
Update README.md
Browse files
README.md
CHANGED
@@ -27,24 +27,67 @@ model-index:
|
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
should probably proofread and complete it, then remove this comment. -->
|
29 |
|
30 |
-
#
|
31 |
|
32 |
This model is a fine-tuned version of [M-FAC/bert-tiny-finetuned-sst2](https://huggingface.co/M-FAC/bert-tiny-finetuned-sst2) on the sst2 dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
- Loss: 0.4771
|
35 |
- Accuracy: 0.8280
|
36 |
|
37 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
More information needed
|
40 |
-
|
41 |
-
## Intended uses & limitations
|
42 |
-
|
43 |
-
More information needed
|
44 |
-
|
45 |
-
## Training and evaluation data
|
46 |
-
|
47 |
-
More information needed
|
48 |
|
49 |
## Training procedure
|
50 |
|
|
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
should probably proofread and complete it, then remove this comment. -->
|
29 |
|
30 |
+
# Bert Tiny for SST2
|
31 |
|
32 |
This model is a fine-tuned version of [M-FAC/bert-tiny-finetuned-sst2](https://huggingface.co/M-FAC/bert-tiny-finetuned-sst2) on the sst2 dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
- Loss: 0.4771
|
35 |
- Accuracy: 0.8280
|
36 |
|
37 |
+
## Usage Example
|
38 |
+
|
39 |
+
```python
|
40 |
+
from transformers import BertTokenizer, BertForSequenceClassification, TrainingArguments, Trainer, DataCollatorWithPadding
|
41 |
+
import datasets
|
42 |
+
|
43 |
+
model = BertForSequenceClassification.from_pretrained('VityaVitalich/bert-tiny-sst2')
|
44 |
+
tokenizer = BertTokenizer.from_pretrained('M-FAC/bert-tiny-finetuned-sst2')
|
45 |
+
|
46 |
+
def create_data(tokenizer):
|
47 |
+
train_set = datasets.load_dataset('sst2', split='train').remove_columns(['idx'])
|
48 |
+
val_set = datasets.load_dataset('sst2', split='validation').remove_columns(['idx'])
|
49 |
+
|
50 |
+
def tokenize_func(examples):
|
51 |
+
return tokenizer(examples["sentence"], max_length=128, padding='max_length', truncation=True)
|
52 |
+
|
53 |
+
encoded_dataset_train = train_set.map(tokenize_func, batched=True)
|
54 |
+
encoded_dataset_test = val_set.map(tokenize_func, batched=True)
|
55 |
+
data_collator = DataCollatorWithPadding(tokenizer)
|
56 |
+
return encoded_dataset_train, encoded_dataset_test, data_collator
|
57 |
+
|
58 |
+
encoded_dataset_train, encoded_dataset_test, data_collator = create_data(tokenizer)
|
59 |
+
|
60 |
+
training_args = TrainingArguments(
|
61 |
+
output_dir='./results',
|
62 |
+
learning_rate=3e-5,
|
63 |
+
per_device_train_batch_size=128,
|
64 |
+
per_device_eval_batch_size=128,
|
65 |
+
load_best_model_at_end=True,
|
66 |
+
num_train_epochs=5,
|
67 |
+
weight_decay=0.1,
|
68 |
+
fp16=True,
|
69 |
+
fp16_full_eval=True,
|
70 |
+
evaluation_strategy="epoch",
|
71 |
+
seed=42,
|
72 |
+
save_strategy = "epoch",
|
73 |
+
save_total_limit=5,
|
74 |
+
logging_strategy="epoch",
|
75 |
+
report_to="all",
|
76 |
+
)
|
77 |
+
|
78 |
+
|
79 |
+
trainer = Trainer(
|
80 |
+
model=model,
|
81 |
+
args=training_args,
|
82 |
+
train_dataset=encoded_dataset_train,
|
83 |
+
eval_dataset=encoded_dataset_test,
|
84 |
+
data_collator=data_collator,
|
85 |
+
compute_metrics=compute_metrics,
|
86 |
+
)
|
87 |
+
|
88 |
+
trainer.evaluate(encoded_dataset_test)
|
89 |
+
```
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
## Training procedure
|
93 |
|