--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base-960h tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy model-index: - name: wav2vec2-base-960h-heart-sounds results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.8673780487804879 --- [Visualize in Weights & Biases](https://wandb.ai/vldmrl-org/HeartDiseaseDetector/runs/7tntog3e) [Visualize in Weights & Biases](https://wandb.ai/vldmrl-org/HeartDiseaseDetector/runs/7tntog3e) # wav2vec2-base-960h-heart-sounds This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3595 - Accuracy: 0.8674 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.9791 | 1.0 | 83 | 0.9290 | 0.5442 | | 0.6532 | 2.0 | 166 | 0.5495 | 0.8186 | | 0.5202 | 3.0 | 249 | 0.4569 | 0.8216 | | 0.4421 | 4.0 | 332 | 0.4378 | 0.8399 | | 0.4144 | 5.0 | 415 | 0.3853 | 0.8765 | | 0.4213 | 6.0 | 498 | 0.3835 | 0.8537 | | 0.3819 | 7.0 | 581 | 0.3647 | 0.8674 | | 0.3994 | 7.9119 | 656 | 0.3595 | 0.8674 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.0.1+cu118 - Datasets 3.3.2 - Tokenizers 0.21.0