VuHuy commited on
Commit
49d4f4a
·
verified ·
1 Parent(s): 4449f2b

Training complete

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: bert-base-cased
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - conll2003
9
+ metrics:
10
+ - precision
11
+ - recall
12
+ - f1
13
+ - accuracy
14
+ model-index:
15
+ - name: bert-finetune-ner
16
+ results:
17
+ - task:
18
+ name: Token Classification
19
+ type: token-classification
20
+ dataset:
21
+ name: conll2003
22
+ type: conll2003
23
+ config: conll2003
24
+ split: validation
25
+ args: conll2003
26
+ metrics:
27
+ - name: Precision
28
+ type: precision
29
+ value: 0.36967418546365916
30
+ - name: Recall
31
+ type: recall
32
+ value: 0.3705365153418267
33
+ - name: F1
34
+ type: f1
35
+ value: 0.37010484810466887
36
+ - name: Accuracy
37
+ type: accuracy
38
+ value: 0.7865868016718667
39
+ ---
40
+
41
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
42
+ should probably proofread and complete it, then remove this comment. -->
43
+
44
+ # bert-finetune-ner
45
+
46
+ This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
47
+ It achieves the following results on the evaluation set:
48
+ - Loss: 0.0722
49
+ - Precision: 0.3697
50
+ - Recall: 0.3705
51
+ - F1: 0.3701
52
+ - Accuracy: 0.7866
53
+
54
+ ## Model description
55
+
56
+ More information needed
57
+
58
+ ## Intended uses & limitations
59
+
60
+ More information needed
61
+
62
+ ## Training and evaluation data
63
+
64
+ More information needed
65
+
66
+ ## Training procedure
67
+
68
+ ### Training hyperparameters
69
+
70
+ The following hyperparameters were used during training:
71
+ - learning_rate: 2e-05
72
+ - train_batch_size: 16
73
+ - eval_batch_size: 16
74
+ - seed: 42
75
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
76
+ - lr_scheduler_type: linear
77
+ - num_epochs: 3
78
+
79
+ ### Training results
80
+
81
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
+ | 0.0501 | 1.0 | 878 | 0.0776 | 0.3631 | 0.3639 | 0.3635 | 0.7850 |
84
+ | 0.0292 | 2.0 | 1756 | 0.0760 | 0.3690 | 0.3661 | 0.3675 | 0.7865 |
85
+ | 0.0144 | 3.0 | 2634 | 0.0722 | 0.3697 | 0.3705 | 0.3701 | 0.7866 |
86
+
87
+
88
+ ### Framework versions
89
+
90
+ - Transformers 4.46.2
91
+ - Pytorch 2.5.1+cu118
92
+ - Datasets 3.1.0
93
+ - Tokenizers 0.20.3