File size: 32,770 Bytes
36c78b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 |
import io
import json
import os
import traceback
import inspect
from typing import Any, Dict, List, Optional, Union
from flask import Flask, jsonify, request, render_template, send_file
import subprocess
import sys
import warnings
import matplotlib.pyplot as plt
import torch
import torch.nn.functional as F
import requests
import gzip
from .model import BitTransformerLM, infer_long_sequence
from .optimization import configure_optimizer
from .collapse import collapse_submodel
from .dashboard import plot_telemetry
from .scale import expand_model
from .bit_io import text_to_bits, bits_to_text
from .safety import hil_safe_inference
from .compression import model_output_decompress, compress_bits
from .distributed import wrap_fsdp
from .training import train_loop
from .telemetry import detect_metric_drift
from .quantization import prepare_qat_fx, convert_qat_fx
from torch.distributed.fsdp import FullyShardedDataParallel
from .hf_checkpoint import hf_login, save_checkpoint, download_checkpoint
app = Flask(__name__)
app.config["MAX_CONTENT_LENGTH"] = 1 * 1024 * 1024 # 1MB upload limit
MCP_SERVER_ADDR = os.getenv("MCP_SERVER_ADDR")
@app.errorhandler(Exception)
def handle_exception(err):
"""Return JSON error responses with stack traces."""
return (
jsonify({"error": str(err), "trace": traceback.format_exc()}),
getattr(err, "code", 500),
)
class MetricDriftWarning(UserWarning):
"""Raised when telemetry metrics drift beyond the configured threshold."""
def _switch_torch(use_gpu: bool) -> None:
"""Install the appropriate PyTorch wheel and restart the process."""
have_cuda = torch.version.cuda is not None
if use_gpu == have_cuda:
return
wheel = "torch==2.7.1+cu118" if use_gpu else "torch==2.7.1+cpu"
url = "https://download.pytorch.org/whl/cu118" if use_gpu else "https://download.pytorch.org/whl/cpu"
subprocess.run([
sys.executable,
"-m",
"pip",
"install",
"--extra-index-url",
url,
wheel,
], check=True)
os.execv(sys.executable, [sys.executable] + sys.argv)
def mcp_post(path: str, data=None):
if not MCP_SERVER_ADDR:
return None
url = MCP_SERVER_ADDR.rstrip("/") + path
resp = requests.post(url, json=data)
resp.raise_for_status()
if resp.headers.get("Content-Type", "").startswith("image/"):
return resp.content
return resp.json()
def mcp_get(path: str):
if not MCP_SERVER_ADDR:
return None
url = MCP_SERVER_ADDR.rstrip("/") + path
resp = requests.get(url)
resp.raise_for_status()
if resp.headers.get("Content-Type", "").startswith("image/"):
return resp.content
return resp.json()
class ModelManager:
"""Manage model state and training utilities for the dashboard."""
def __init__(
self,
snapshot_dir: Optional[str] = None,
telemetry_log: Optional[str] = None,
*,
drift_window: int = 10,
drift_threshold: float = 0.2,
) -> None:
self.snapshot_dir = snapshot_dir or os.getenv("SNAPSHOT_DIR", "snapshots")
self.telemetry_log = telemetry_log or os.getenv("TELEMETRY_LOG")
if self.telemetry_log is None:
self.telemetry_log = os.path.join(self.snapshot_dir, "metrics.json")
os.makedirs(self.snapshot_dir, exist_ok=True)
self.weights_path = os.path.join(self.snapshot_dir, "model.pt")
self.model: Optional[BitTransformerLM] = None
self.optimizer: Optional[torch.optim.Optimizer] = None
self.scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None
self.total_steps = 100
self.metrics: Dict[str, List[float]] = {
"negentropy_logits": [],
"lz_complexity_logits": [],
"symbiosis_score": [],
}
self.drift_window = drift_window
self.drift_threshold = drift_threshold
self.lambda_K = 1.0
self.lambda_C = 1.0
self.lambda_S = 1.0
self.c_floor = 0.3
self.s_floor = 0.5
self.causal = True
self.diffusion = False
self.decompress_output = False
self.use_compression = False
self.use_gpu = False
self.qat = False
# Load any existing state
if os.path.exists(self.telemetry_log):
try:
with open(self.telemetry_log) as f:
saved = json.load(f)
for key in self.metrics:
self.metrics[key] = saved.get(key, [])
except Exception:
pass
if os.path.exists(self.weights_path):
try:
self.model = torch.load(self.weights_path, map_location="cpu")
self.optimizer, self.scheduler = configure_optimizer(
self.model, lr=1e-3, total_steps=self.total_steps
)
self._apply_device()
except Exception:
self.model = None
config_path = os.getenv("MODEL_CONFIG", "/config/model_params.json")
if self.model is None and os.path.exists(config_path):
try:
with open(config_path) as f:
params = json.load(f)
self.init_model(params)
except Exception:
pass
def init_model(self, params: Dict) -> None:
int_fields = {
"d_model",
"nhead",
"num_layers",
"dim_feedforward",
"max_seq_len",
"chunk_size",
"overlap",
}
float_fields = {"act_threshold"}
bool_fields = {"reversible", "use_checkpoint"}
clean: Dict[str, Any] = {}
for k, v in params.items():
if v is None:
clean[k] = None
elif k in int_fields:
clean[k] = int(v)
elif k in float_fields:
clean[k] = float(v)
elif k in bool_fields:
clean[k] = bool(v)
else:
clean[k] = v
self.model = BitTransformerLM(
**clean,
lambda_K=self.lambda_K,
lambda_C=self.lambda_C,
lambda_S=self.lambda_S,
)
self.optimizer, self.scheduler = configure_optimizer(
self.model, lr=1e-3, total_steps=self.total_steps
)
self._apply_device()
for key in self.metrics:
self.metrics[key].clear()
def set_lambdas(self, k: float, c: float, s: float) -> None:
"""Update λ weights and propagate to the model."""
self.lambda_K = k
self.lambda_C = c
self.lambda_S = s
if self.model is not None:
self.model.set_lambdas(k, c, s)
def set_floors(self, c_floor: float, s_floor: float) -> None:
"""Update safety floors for complexity (C) and symbiosis (S)."""
self.c_floor = c_floor
self.s_floor = s_floor
def set_diffusion(self, flag: bool) -> None:
"""Toggle Diffusion LM mode which disables causal masking and chunking."""
self.diffusion = flag
self.causal = not flag
if self.model is not None and flag:
self.model.chunk_size = None
def set_decompress_output(self, flag: bool) -> None:
"""Enable or disable decompression of model outputs."""
self.decompress_output = flag
def set_compression(self, flag: bool) -> None:
"""Toggle automatic compression of inputs."""
self.use_compression = flag
def set_qat(self, flag: bool) -> None:
"""Enable or disable 4-bit quantization-aware training."""
self.qat = flag
if self.model is None:
return
if flag:
self.model = prepare_qat_fx(self.model)
else:
self.model = convert_qat_fx(self.model)
def set_gpu(self, flag: bool) -> None:
"""Toggle GPU acceleration and FSDP, reinstalling PyTorch if needed."""
_switch_torch(flag)
self.use_gpu = flag and torch.cuda.is_available()
self._apply_device()
def _apply_device(self) -> None:
"""Move the model to the selected device and wrap with FSDP if needed."""
if self.model is None:
return
if self.use_gpu:
device = torch.device("cuda")
if isinstance(self.model, FullyShardedDataParallel):
base = self.model.module
else:
base = self.model
base = base.to(device)
self.model = wrap_fsdp(base, device_id=device)
else:
device = torch.device("cpu")
if isinstance(self.model, FullyShardedDataParallel):
self.model = self.model.module
self.model = self.model.to(device)
def train_step(self, bits: torch.Tensor) -> float:
assert (
self.model is not None
and self.optimizer is not None
and self.scheduler is not None
)
self.model.train()
device = next(self.model.parameters()).device
bits = bits.to(device)
ratio = 1.0
if self.use_compression:
comps = [compress_bits(row.to(torch.uint8)) for row in bits]
comp_len = sum(c.numel() for c in comps)
ratio = min(comp_len / bits.numel(), 1.0)
logits, telemetry = self.model.forward_compressed(comps, causal=self.causal)
else:
logits, telemetry = self.model(bits, causal=self.causal)
pred = logits[:, :-1, :].reshape(-1, 2)
target = bits[:, 1:].reshape(-1)
loss = F.cross_entropy(pred, target)
loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
self.optimizer.step()
self.scheduler.step()
self.optimizer.zero_grad()
self._log_metrics(telemetry)
self._save_state()
return loss.item(), ratio
def train_epochs(
self,
bits: torch.Tensor,
*,
epochs: int = 1,
compress_prob: float = 0.5,
direct_prob: float = 0.0,
batch_size: int = 8,
num_workers: int = 0,
accum_steps: int = 1,
amp: bool = False,
compile_model: bool = False,
) -> List[Dict[str, float]]:
"""Run ``train_loop`` on a batch tensor and persist the state."""
assert self.model is not None
device = next(self.model.parameters()).device
bits = bits.to(device)
import math
steps_per_epoch = max(1, math.ceil(len(bits) / batch_size))
self.total_steps = math.ceil(epochs * steps_per_epoch / accum_steps)
self.optimizer, self.scheduler = configure_optimizer(
self.model, lr=1e-3, total_steps=self.total_steps
)
metrics = train_loop(
self.model,
bits,
epochs=epochs,
compress_prob=compress_prob if self.use_compression else 0.0,
direct_prob=direct_prob,
batch_size=batch_size,
num_workers=num_workers,
accum_steps=accum_steps,
amp=amp,
compile_model=compile_model,
forward_kwargs={"causal": self.causal},
optimizer=self.optimizer,
scheduler=self.scheduler,
)
self._save_state()
return metrics
def scale_up(self, width_mult: float = 1.0) -> None:
assert self.model is not None
params = dict(
d_model=int(self.model.d_model * width_mult),
nhead=self.model.layers[0].self_attn.num_heads,
num_layers=self.model.num_layers * 2,
dim_feedforward=int(self.model.layers[0].linear1.out_features * width_mult),
max_seq_len=self.model.pos_enc.pe.size(0),
)
self.model = expand_model(self.model, {
**params,
"lambda_K": self.lambda_K,
"lambda_C": self.lambda_C,
"lambda_S": self.lambda_S,
})
self.optimizer, self.scheduler = configure_optimizer(
self.model, lr=1e-3, total_steps=self.total_steps
)
self._save_state()
def collapse(self, cluster_bits: List[List[int]], target_params: Dict, width_scale: float = 1.0) -> None:
self.model, _ = collapse_submodel(
cluster_bits,
target_params,
width_scale=width_scale,
forward_kwargs={"causal": self.causal},
)
self.model.set_lambdas(self.lambda_K, self.lambda_C, self.lambda_S)
self.optimizer, self.scheduler = configure_optimizer(
self.model, lr=1e-3, total_steps=self.total_steps
)
self._apply_device()
for key in self.metrics:
self.metrics[key].clear()
def infer(self, bits: torch.Tensor) -> Dict:
assert self.model is not None
self.model.eval()
device = next(self.model.parameters()).device
bits = bits.to(device)
ratio = 1.0
with torch.no_grad():
if self.use_compression:
comps = [compress_bits(row.to(torch.uint8)) for row in bits]
comp_len = sum(c.numel() for c in comps)
ratio = min(comp_len / bits.numel(), 1.0)
logits, telemetry = self.model.forward_compressed(comps, causal=self.causal)
else:
logits, telemetry = self.model(bits, causal=self.causal)
self._log_metrics(telemetry)
pred_bits = logits.argmax(-1)
if self.decompress_output:
try:
pred_bits = model_output_decompress(pred_bits)
except Exception as e:
return {"error": f"Decompression failed: {e}", "suggestion": "Disable compression toggle."}
def _to_python(obj):
if isinstance(obj, torch.Tensor):
return obj.tolist()
if isinstance(obj, list):
return [_to_python(o) for o in obj]
if isinstance(obj, dict):
return {kk: _to_python(vv) for kk, vv in obj.items()}
return obj
tele = {k: _to_python(v) for k, v in telemetry.items()}
return {"predicted": pred_bits.squeeze(0).tolist(), "telemetry": tele, "ratio": ratio}
def infer_long(self, bits: torch.Tensor, ctx_bits: int = 4096, overlap: int = 256) -> Dict:
"""Run sliding-window inference on a long sequence."""
assert self.model is not None
device = next(self.model.parameters()).device
bits = bits.to(device)
preds, logs = infer_long_sequence(self.model, bits.squeeze(0), ctx_bits=ctx_bits, overlap=overlap)
for tele in logs:
self._log_metrics(tele)
return {"predicted": preds.tolist(), "windows": len(logs)}
def _log_metrics(self, telemetry: Dict) -> None:
for key in self.metrics:
val = telemetry[key].mean().item()
self.metrics[key].append(val)
drift = detect_metric_drift(
self.metrics, window=self.drift_window, threshold=self.drift_threshold
)
bad = [k for k, v in drift.items() if v]
if bad:
warnings.warn(
f"Metric drift detected: {', '.join(bad)}",
MetricDriftWarning,
)
def infer_text(self, text: str) -> Dict[str, Any]:
"""Run text through the model using the safety gate."""
assert self.model is not None
device = next(self.model.parameters()).device
bits = torch.tensor(text_to_bits(text), dtype=torch.long).unsqueeze(0).to(device)
out_bits, telemetry = hil_safe_inference(
self.model, bits, c_floor=self.c_floor, s_floor=self.s_floor
)
self._log_metrics(telemetry)
return {
"output": bits_to_text(out_bits.squeeze(0).tolist()),
"telemetry": telemetry,
}
def get_status(self) -> Dict[str, Any]:
info: Dict[str, Any] = {
"use_gpu": self.use_gpu,
"diffusion": self.diffusion,
"compression": self.use_compression,
"lambda_K": self.lambda_K,
"lambda_C": self.lambda_C,
"lambda_S": self.lambda_S,
"c_floor": self.c_floor,
"s_floor": self.s_floor,
"qat": self.qat,
}
if self.model is not None:
info.update(
{
"d_model": self.model.d_model,
"num_layers": self.model.num_layers,
"d_ff": self.model.layers[0].linear1.out_features,
"nhead": self.model.layers[0].self_attn.num_heads,
"max_seq_len": self.model.pos_enc.pe.size(0),
}
)
else:
info.update(
{
"d_model": None,
"num_layers": 0,
"d_ff": None,
"nhead": None,
"max_seq_len": None,
}
)
return info
def get_model_config(self) -> Dict[str, Any]:
"""Return current model hyperparameters and safety settings."""
cfg: Dict[str, Any] = {
"lambda_K": self.lambda_K,
"lambda_C": self.lambda_C,
"lambda_S": self.lambda_S,
"c_floor": self.c_floor,
"s_floor": self.s_floor,
}
if self.model is not None:
cfg.update(
{
"d_model": self.model.d_model,
"nhead": self.model.layers[0].self_attn.num_heads,
"num_layers": self.model.num_layers,
"dim_feedforward": self.model.layers[0].linear1.out_features,
"max_seq_len": self.model.pos_enc.pe.size(0),
"chunk_size": self.model.chunk_size,
"reversible": self.model.reversible,
"use_checkpoint": self.model.use_checkpoint,
}
)
else:
cfg.update(
{
"d_model": None,
"nhead": None,
"num_layers": 0,
"dim_feedforward": None,
"max_seq_len": None,
"chunk_size": None,
"reversible": None,
"use_checkpoint": None,
}
)
return cfg
def get_metrics(self) -> Dict[str, Any]:
"""Return logged telemetry metrics with summary statistics."""
from statistics import mean, stdev
data = {
"negentropy": self.metrics["negentropy_logits"],
"lz_complexity": self.metrics["lz_complexity_logits"],
"symbiosis": self.metrics["symbiosis_score"],
}
summary: Dict[str, Dict[str, Optional[float]]] = {}
for key, values in data.items():
if values:
m = mean(values)
s = stdev(values) if len(values) > 1 else 0.0
summary[key] = {"mean": m, "std": s}
else:
summary[key] = {"mean": None, "std": None}
data["summary"] = summary
return data
def _save_state(self) -> None:
if self.model is None:
return
torch.save(self.model, self.weights_path)
with open(self.telemetry_log, "w") as f:
json.dump(self.metrics, f)
manager: Optional[ModelManager] = None
@app.route("/")
def index():
return render_template(
"dashboard.html",
metrics=manager.metrics,
lambdas={
"lambda_K": manager.lambda_K,
"lambda_C": manager.lambda_C,
"lambda_S": manager.lambda_S,
},
diffusion=manager.diffusion,
compression=manager.use_compression,
defaults={k: v.default for k, v in inspect.signature(BitTransformerLM.__init__).parameters.items() if v.default is not inspect._empty},
c_floor=manager.c_floor,
s_floor=manager.s_floor,
qat=manager.qat,
)
@app.route("/status", methods=["GET"])
def status():
if MCP_SERVER_ADDR:
return jsonify(mcp_get("/status"))
return jsonify(manager.get_status())
@app.route("/model_config", methods=["GET"])
def model_config():
if MCP_SERVER_ADDR:
return jsonify(mcp_get("/model_config"))
return jsonify(manager.get_model_config())
@app.route("/metrics", methods=["GET"])
def metrics():
if MCP_SERVER_ADDR:
return jsonify(mcp_get("/metrics"))
return jsonify(manager.get_metrics())
@app.route("/save_checkpoint", methods=["POST"])
def save_checkpoint_route():
repo_id = request.json.get("repo_id")
token = request.json.get("token") or os.getenv("HF_TOKEN")
if MCP_SERVER_ADDR:
return jsonify(mcp_post("/save_checkpoint", {"repo_id": repo_id, "token": token}))
if manager.model is None:
return jsonify({"error": "model not initialized"}), 400
if token:
hf_login(token=token)
save_checkpoint(manager.model, repo_id=repo_id)
return jsonify({"status": "saved"})
@app.route("/download_checkpoint", methods=["POST"])
def download_checkpoint_route():
repo_id = request.json.get("repo_id")
token = request.json.get("token") or os.getenv("HF_TOKEN")
if MCP_SERVER_ADDR:
return jsonify(mcp_post("/download_checkpoint", {"repo_id": repo_id, "token": token}))
if token:
hf_login(token=token)
dest = manager.weights_path + ".gz"
ok = download_checkpoint(dest, repo_id=repo_id)
if not ok:
return jsonify({"status": "failed"}), 500
if manager.model is None:
return jsonify({"status": "downloaded", "loaded": False})
with gzip.open(dest, "rb") as f:
state = torch.load(f, map_location="cpu")
manager.model.load_state_dict(state)
manager.optimizer, manager.scheduler = configure_optimizer(
manager.model, lr=1e-3, total_steps=manager.total_steps
)
manager._apply_device()
manager._save_state()
return jsonify({"status": "downloaded", "loaded": True})
@app.route("/text_to_bits", methods=["POST"])
def text_to_bits_route():
text = request.json.get("text", "")
if len(text) > 100_000:
return jsonify({"error": "text too large"}), 413
return jsonify({"bits": text_to_bits(text)})
@app.route("/dataset", methods=["GET"])
def dataset_route():
name = request.args.get("name", "")
split = request.args.get("split", "train")
size = int(request.args.get("size", 1))
seq_len = int(request.args.get("seq_len", 64))
if size * seq_len > 1_000_000:
return jsonify({"error": "dataset too large"}), 413
if name == "wikitext2":
try:
from datasets import load_dataset
ds = load_dataset("wikitext", "wikitext-2-raw-v1", split=split)
lines = [t for t in ds["text"] if t.strip()][:size]
except Exception:
bits = torch.randint(0, 2, (size, seq_len), dtype=torch.long)
return jsonify({"bits": bits.tolist()})
bits_list = []
for text in lines:
b = text_to_bits(text)[:seq_len]
if len(b) < seq_len:
b.extend([0] * (seq_len - len(b)))
bits_list.append(b)
if len(bits_list) < size:
pad = size - len(bits_list)
bits_list.extend(torch.randint(0, 2, (pad, seq_len), dtype=torch.long).tolist())
return jsonify({"bits": bits_list})
return jsonify({"error": "unknown dataset"}), 400
@app.route("/init", methods=["POST"])
def init_model():
data = request.json or {}
int_fields = {
"d_model",
"nhead",
"num_layers",
"dim_feedforward",
"max_seq_len",
"chunk_size",
"overlap",
}
float_fields = {"act_threshold"}
bool_fields = {"reversible", "use_checkpoint"}
params = {}
for k, v in data.items():
if v is None:
params[k] = None
elif k in int_fields:
params[k] = int(v)
elif k in float_fields:
params[k] = float(v)
elif k in bool_fields:
params[k] = bool(v)
else:
params[k] = v
if MCP_SERVER_ADDR:
data = mcp_post("/init", params)
return jsonify(data)
manager.init_model(params)
return jsonify({"status": "initialized", "params": params})
@app.route("/train", methods=["POST"])
def train_model():
bits = torch.tensor(request.json["bits"], dtype=torch.long)
if MCP_SERVER_ADDR:
data = mcp_post("/train", {"bits": request.json["bits"]})
return jsonify(data)
loss, ratio = manager.train_step(bits)
return jsonify({"loss": loss, "ratio": ratio})
@app.route("/train_epochs", methods=["POST"])
def train_epochs_route():
bits = torch.tensor(request.json["bits"], dtype=torch.long)
epochs = int(request.json.get("epochs", 1))
compress_prob = float(request.json.get("compress_prob", 0.5))
direct_prob = float(request.json.get("direct_prob", 0.0))
if MCP_SERVER_ADDR:
data = mcp_post(
"/train_epochs",
{
"bits": request.json["bits"],
"epochs": epochs,
"compress_prob": compress_prob,
"direct_prob": direct_prob,
},
)
return jsonify(data)
metrics = manager.train_epochs(
bits,
epochs=epochs,
compress_prob=compress_prob,
direct_prob=direct_prob,
)
return jsonify({"metrics": metrics})
@app.route("/scale_up", methods=["POST"])
def scale_up():
width_mult = float(request.json.get("width_mult", 1.0))
if MCP_SERVER_ADDR:
data = mcp_post("/scale_up", {"width_mult": width_mult})
return jsonify(data)
manager.scale_up(width_mult)
return jsonify({
"status": "scaled",
"layers": manager.model.num_layers,
"d_model": manager.model.d_model,
})
@app.route("/collapse", methods=["POST"])
def collapse_model():
cluster_bits = request.json["clusters"]
params = {k: int(v) for k, v in request.json["params"].items()}
width_scale = float(request.json.get("width_scale", 1.0))
if MCP_SERVER_ADDR:
data = mcp_post(
"/collapse",
{"clusters": cluster_bits, "params": params, "width_scale": width_scale},
)
return jsonify(data)
manager.collapse(cluster_bits, params, width_scale)
return jsonify({"status": "collapsed"})
@app.route("/lambdas", methods=["GET", "POST"])
def update_lambdas():
if request.method == "POST":
data = request.json
if MCP_SERVER_ADDR:
res = mcp_post("/lambdas", data)
return jsonify(res)
manager.set_lambdas(
float(data["lambda_K"]), float(data["lambda_C"]), float(data["lambda_S"])
)
return jsonify({"status": "updated"})
else:
if MCP_SERVER_ADDR:
return jsonify(mcp_get("/lambdas"))
return jsonify(
{
"lambda_K": manager.lambda_K,
"lambda_C": manager.lambda_C,
"lambda_S": manager.lambda_S,
}
)
@app.route("/config/telemetry", methods=["GET", "POST"])
def telemetry_config():
"""Get or update telemetry λ weights and safety floors."""
if request.method == "POST":
data = request.json
if MCP_SERVER_ADDR:
res = mcp_post("/config/telemetry", data)
return jsonify(res)
manager.set_lambdas(
float(data.get("lambda_K", manager.lambda_K)),
float(data.get("lambda_C", manager.lambda_C)),
float(data.get("lambda_S", manager.lambda_S)),
)
manager.set_floors(
float(data.get("c_floor", manager.c_floor)),
float(data.get("s_floor", manager.s_floor)),
)
return jsonify({"status": "updated"})
else:
if MCP_SERVER_ADDR:
return jsonify(mcp_get("/config/telemetry"))
return jsonify(
{
"lambda_K": manager.lambda_K,
"lambda_C": manager.lambda_C,
"lambda_S": manager.lambda_S,
"c_floor": manager.c_floor,
"s_floor": manager.s_floor,
}
)
@app.route("/diffusion", methods=["GET", "POST"])
def update_diffusion():
if request.method == "POST":
if MCP_SERVER_ADDR:
return jsonify(mcp_post("/diffusion", request.json))
manager.set_diffusion(bool(request.json.get("diffusion", False)))
return jsonify({"status": "updated"})
else:
if MCP_SERVER_ADDR:
return jsonify(mcp_get("/diffusion"))
return jsonify({"diffusion": manager.diffusion})
@app.route("/gpu", methods=["GET", "POST"])
def update_gpu():
if request.method == "POST":
if MCP_SERVER_ADDR:
return jsonify(mcp_post("/gpu", request.json))
manager.set_gpu(bool(request.json.get("use_gpu", False)))
return jsonify({"status": "updated"})
else:
if MCP_SERVER_ADDR:
return jsonify(mcp_get("/gpu"))
return jsonify({"use_gpu": manager.use_gpu})
@app.route("/compression", methods=["GET", "POST"])
def update_compression():
if request.method == "POST":
if MCP_SERVER_ADDR:
return jsonify(mcp_post("/compression", request.json))
manager.set_compression(bool(request.json.get("compression", False)))
return jsonify({"status": "updated"})
else:
if MCP_SERVER_ADDR:
return jsonify(mcp_get("/compression"))
return jsonify({"compression": manager.use_compression})
@app.route("/qat", methods=["GET", "POST"])
def update_qat():
if request.method == "POST":
if MCP_SERVER_ADDR:
return jsonify(mcp_post("/qat", request.json))
manager.set_qat(bool(request.json.get("qat", False)))
return jsonify({"status": "updated"})
else:
if MCP_SERVER_ADDR:
return jsonify(mcp_get("/qat"))
return jsonify({"qat": manager.qat})
@app.route("/infer", methods=["POST"])
def inference():
bits = torch.tensor(request.json["bits"], dtype=torch.long)
if MCP_SERVER_ADDR:
data = mcp_post("/infer", {"bits": request.json["bits"]})
return jsonify(data)
result = manager.infer(bits)
return jsonify(result)
@app.route("/infer_long", methods=["POST"])
def inference_long():
bits = torch.tensor(request.json["bits"], dtype=torch.long)
ctx = int(request.json.get("ctx_bits", 4096))
overlap = int(request.json.get("overlap", 256))
if MCP_SERVER_ADDR:
data = mcp_post(
"/infer_long",
{"bits": request.json["bits"], "ctx_bits": ctx, "overlap": overlap},
)
return jsonify(data)
result = manager.infer_long(bits, ctx_bits=ctx, overlap=overlap)
return jsonify(result)
@app.route("/infer_text", methods=["POST"])
def inference_text():
text = request.json.get("text", "")
if MCP_SERVER_ADDR:
data = mcp_post("/infer_text", {"text": text})
return jsonify(data)
result = manager.infer_text(text)
return jsonify(result)
@app.route("/plot.png")
def plot_png():
if MCP_SERVER_ADDR:
resp = requests.get(MCP_SERVER_ADDR.rstrip("/") + "/plot.png")
resp.raise_for_status()
return send_file(io.BytesIO(resp.content), mimetype="image/png")
fig, _ = plot_telemetry(manager.metrics)
buf = io.BytesIO()
fig.savefig(buf, format="png")
plt.close(fig)
buf.seek(0)
return send_file(buf, mimetype="image/png")
def run_dashboard(host: Optional[str] = None, port: Optional[int] = None,
snapshot_dir: Optional[str] = None, telemetry_log: Optional[str] = None) -> None:
"""Launch the Flask dashboard server."""
env_host = os.getenv("HOST", "0.0.0.0")
env_port = int(os.getenv("PORT", "5000"))
host = host or env_host
port = port or env_port
global manager
if manager is None:
manager = ModelManager(snapshot_dir, telemetry_log)
app.run(host=host, port=port, debug=True)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Run dashboard server")
parser.add_argument("--host", default=os.getenv("HOST", "0.0.0.0"))
parser.add_argument("--port", type=int, default=int(os.getenv("PORT", "5000")))
parser.add_argument("--snapshot-dir", default=os.getenv("SNAPSHOT_DIR", "snapshots"))
parser.add_argument("--telemetry-log", default=os.getenv("TELEMETRY_LOG"))
args = parser.parse_args()
run_dashboard(args.host, args.port, args.snapshot_dir, args.telemetry_log)
|