File size: 4,803 Bytes
36c78b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#!/usr/bin/env python3
"""
BitTransformerLM Single GPU 680M Parameter Training
===================================================

PROOF OF CONCEPT: 680M parameter model on single GPU to validate everything works!
"""

import os
import sys
import time
import logging
from datetime import datetime

import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from datasets import load_dataset

from bit_transformer.model import BitTransformerLM
from bit_transformer.bit_io import text_to_bits
from bit_transformer.utils import set_dropout

logging.basicConfig(level=logging.INFO, format='%(asctime)s [%(levelname)s] %(message)s')
logger = logging.getLogger(__name__)


def main():
    """Single GPU 680M parameter training - PROOF IT WORKS!"""
    
    logger.info("πŸš€ SINGLE GPU 680M PARAMETER BITTRANSFORMERLM PROOF OF CONCEPT!")
    logger.info("=" * 70)
    
    # Model configuration - SAME AS BEFORE
    config = {
        "d_model": 1536,
        "nhead": 24, 
        "num_layers": 24,
        "dim_feedforward": 6144,
        "max_seq_len": 2048,
        "lambda_K": 1.0,
        "lambda_C": 1.0,
        "lambda_S": 1.0,
        "reversible": True,
        "use_checkpoint": True,
        "use_autocast": True,
        "chunk_size": None,
        "full_attn_logging": False,
    }
    
    # Create model
    logger.info("πŸ—οΈ Creating 680M parameter model...")
    model = BitTransformerLM(**config)
    params = sum(p.numel() for p in model.parameters())
    logger.info(f"βœ… Model created: {params:,} parameters ({params/1e6:.1f}M)")
    
    # Move to GPU
    device = torch.device('cuda:0')
    model = model.to(device)
    logger.info(f"βœ… Model moved to {device}")
    
    # Simple dataset
    logger.info("πŸ“š Creating simple dataset...")
    
    class SimpleDataset(torch.utils.data.Dataset):
        def __init__(self, num_samples=100):
            self.num_samples = num_samples
            self.seq_len = 2048
            
        def __len__(self):
            return self.num_samples
            
        def __getitem__(self, idx):
            # Create simple alternating bit patterns
            pattern = [0, 1, 1, 0] * (self.seq_len // 4)
            if len(pattern) > self.seq_len:
                pattern = pattern[:self.seq_len]
            elif len(pattern) < self.seq_len:
                pattern.extend([0] * (self.seq_len - len(pattern)))
                
            input_bits = torch.tensor(pattern[:-1], dtype=torch.long)
            target_bits = torch.tensor(pattern[1:], dtype=torch.long)
            
            return input_bits, target_bits
    
    dataset = SimpleDataset(100)
    dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
    logger.info(f"βœ… Dataset created: {len(dataset)} samples")
    
    # Optimizer
    optimizer = torch.optim.AdamW(model.parameters(), lr=1e-4, weight_decay=0.01)
    scaler = torch.amp.GradScaler('cuda')
    
    logger.info("🎯 Starting training...")
    model.train()
    set_dropout(model, 0.1)
    
    start_time = time.time()
    
    for step, (input_ids, labels) in enumerate(dataloader):
        if step >= 50:  # Just prove it works for 50 steps
            break
            
        input_ids = input_ids.to(device)
        labels = labels.to(device)
        
        optimizer.zero_grad()
        
        # Forward pass with mixed precision
        with torch.amp.autocast('cuda'):
            outputs = model(input_ids)
            
            if isinstance(outputs, tuple):
                logits, telemetry = outputs
            else:
                logits = outputs
                telemetry = {}
            
            loss = F.cross_entropy(logits.view(-1, 2), labels.view(-1))
        
        # Backward pass
        scaler.scale(loss).backward()
        scaler.unscale_(optimizer)
        torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
        scaler.step(optimizer)
        scaler.update()
        
        if step % 10 == 0:
            elapsed = time.time() - start_time
            memory_used = torch.cuda.memory_allocated(0) / (1024**3)
            
            logger.info(
                f"Step {step:2d} | "
                f"Loss: {loss.item():.4f} | "
                f"K: {telemetry.get('negentropy', 0):.3f} | "
                f"C: {telemetry.get('lz_complexity', 0):.3f} | "
                f"S: {telemetry.get('symbiosis', 0):.3f} | "
                f"Mem: {memory_used:.1f}GB | "
                f"Time: {elapsed:.1f}s"
            )
            start_time = time.time()
    
    logger.info("πŸ† SUCCESS! 680M parameter BitTransformerLM trained successfully!")
    logger.info("βœ… Single GPU training PROVEN!")
    logger.info("βœ… Ready for proper multi-GPU scaling!")
    

if __name__ == "__main__":
    main()