File size: 31,685 Bytes
2b42db0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 |
#!/usr/bin/env python3
"""
BitTransformerLM Gradio Dashboard
=================================
Comprehensive Gradio interface for BitTransformerLM with full feature parity to the Flask dashboard.
Supports both local deployment and HuggingFace Spaces integration while maintaining MCP server compatibility.
"""
import io
import json
import os
import sys
import traceback
import warnings
from typing import Any, Dict, List, Optional, Union, Tuple
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Agg') # Use non-interactive backend
import torch
import torch.nn.functional as F
import gradio as gr
import numpy as np
from pathlib import Path
import threading
import time
import requests
from concurrent.futures import ThreadPoolExecutor
import uuid
# Add BitTransformerLM to path
sys.path.insert(0, str(Path(__file__).parent))
# BitTransformerLM imports
from bit_transformer.model import BitTransformerLM, infer_long_sequence
from bit_transformer.optimization import configure_optimizer
from bit_transformer.collapse import collapse_submodel
from bit_transformer.dashboard import plot_telemetry
from bit_transformer.scale import expand_model
from bit_transformer.bit_io import text_to_bits, bits_to_text
from bit_transformer.safety import hil_safe_inference
from bit_transformer.compression import model_output_decompress, compress_bits
from bit_transformer.distributed import wrap_fsdp
from bit_transformer.training import train_loop
from bit_transformer.telemetry import detect_metric_drift
from bit_transformer.quantization import prepare_qat_fx, convert_qat_fx
from bit_transformer.hf_checkpoint import hf_login, save_checkpoint, download_checkpoint
from bit_transformer.dataset_builder import BitTransformerDatasetBuilder, create_bittransformerlm_dataset
# Global state management
class GradioModelManager:
"""Enhanced ModelManager for Gradio interface with thread safety."""
def __init__(self):
self.model = None
self.config = {}
self.telemetry_log = {
"negentropy": [],
"lz_complexity": [],
"symbiosis_score": [],
"steps": []
}
self.c_floor = 0.3
self.s_floor = 0.5
self.lambda_weights = {"K": 1.0, "C": 1.0, "S": 1.0}
self.compression_enabled = False
self.qat_enabled = False
self.diffusion_enabled = False
self.gpu_enabled = False
# Background job management
self.executor = ThreadPoolExecutor(max_workers=4)
self.jobs = {}
self.mcp_server_addr = os.getenv("MCP_SERVER_ADDR")
# Thread safety
self.lock = threading.Lock()
def init_model(self, model_config: dict):
"""Initialize BitTransformerLM model with given configuration."""
with self.lock:
try:
# Clean config - remove None values
clean_config = {k: v for k, v in model_config.items() if v is not None and v != ""}
self.model = BitTransformerLM(**clean_config)
self.config = clean_config
# Apply transformations
if self.qat_enabled:
self.model = prepare_qat_fx(self.model)
if self.gpu_enabled and torch.cuda.is_available():
self.model = self.model.cuda()
return f"β
Model initialized with config: {clean_config}"
except Exception as e:
return f"β Model initialization failed: {str(e)}"
def train_step(self, bits_input, epochs=1):
"""Execute training step(s) with given bit input."""
if self.model is None:
return "β Model not initialized", None, None
try:
# Parse bits input
if isinstance(bits_input, str):
if bits_input.strip().startswith('['):
# JSON format
bits = json.loads(bits_input)
else:
# Space-separated format
bits = [int(x) for x in bits_input.strip().split()]
else:
bits = bits_input
tensor = torch.tensor(bits, dtype=torch.long)
if self.gpu_enabled and torch.cuda.is_available():
tensor = tensor.cuda()
# Training loop
total_loss = 0
compression_ratio = 1.0
for epoch in range(epochs):
self.model.train()
# Forward pass with telemetry
if self.compression_enabled:
compressed_bits, ratio = compress_bits(bits)
tensor = torch.tensor(compressed_bits, dtype=torch.long)
compression_ratio = ratio
output, telemetry = self.model(tensor.unsqueeze(0))
# Compute loss
if output.dim() == 3:
loss = F.cross_entropy(
output.view(-1, output.size(-1)),
tensor[:-1].unsqueeze(0).contiguous().view(-1),
ignore_index=-1
)
else:
loss = F.cross_entropy(output, tensor.unsqueeze(0))
# Backward pass
loss.backward()
# Update telemetry
self._update_telemetry(telemetry)
total_loss += loss.item()
avg_loss = total_loss / epochs
return f"β
Training completed. Average Loss: {avg_loss:.4f}", avg_loss, compression_ratio
except Exception as e:
return f"β Training failed: {str(e)}", None, None
def inference(self, bits_input, long_inference=False, ctx_bits=4096, overlap=256):
"""Run inference on bit input."""
if self.model is None:
return "β Model not initialized", None
try:
# Parse bits input
if isinstance(bits_input, str):
if bits_input.strip().startswith('['):
bits = json.loads(bits_input)
else:
bits = [int(x) for x in bits_input.strip().split()]
else:
bits = bits_input
tensor = torch.tensor(bits, dtype=torch.long)
if self.gpu_enabled and torch.cuda.is_available():
tensor = tensor.cuda()
self.model.eval()
with torch.inference_mode():
if long_inference or len(bits) > ctx_bits:
# Long sequence inference
output, telemetry = infer_long_sequence(
self.model, tensor.unsqueeze(0),
ctx_bits=ctx_bits, overlap=overlap
)
else:
# Standard inference with safety gates
output, telemetry = hil_safe_inference(
self.model, tensor.unsqueeze(0),
c_floor=self.c_floor, s_floor=self.s_floor
)
# Update telemetry
self._update_telemetry(telemetry)
output_bits = output.squeeze(0).cpu().tolist()
return f"β
Inference completed. Output length: {len(output_bits)}", output_bits
except Exception as e:
return f"β Inference failed: {str(e)}", None
def text_inference(self, text_input):
"""Convert text to bits, run inference, convert back to text."""
try:
# Text to bits
bits = text_to_bits(text_input)
# Run inference
result, output_bits = self.inference(bits)
if output_bits is None:
return result, None
# Convert back to text
try:
output_text = bits_to_text(output_bits)
return f"β
Text inference completed.", output_text
except Exception as e:
return f"β
Inference completed, but text conversion failed: {str(e)}", str(output_bits)
except Exception as e:
return f"β Text inference failed: {str(e)}", None
def scale_model(self, width_multiplier):
"""Scale up model width."""
if self.model is None:
return "β Model not initialized"
try:
with self.lock:
self.model = expand_model(self.model, width_multiplier)
return f"β
Model scaled by factor {width_multiplier}"
except Exception as e:
return f"β Model scaling failed: {str(e)}"
def collapse_model(self, cluster_bits, target_params, width_scale=1.0):
"""Collapse model using cluster analysis."""
if self.model is None:
return "β Model not initialized"
try:
# Parse inputs
if isinstance(cluster_bits, str):
clusters = json.loads(cluster_bits)
else:
clusters = cluster_bits
if isinstance(target_params, str):
params = json.loads(target_params)
else:
params = target_params
with self.lock:
collapsed_model = collapse_submodel(
self.model, clusters, params, width_scale
)
self.model = collapsed_model
return f"β
Model collapsed successfully"
except Exception as e:
return f"β Model collapse failed: {str(e)}"
def get_model_status(self):
"""Get current model status and configuration."""
if self.model is None:
return "β No model initialized"
try:
param_count = sum(p.numel() for p in self.model.parameters())
status = {
"initialized": True,
"parameters": param_count,
"config": self.config,
"gpu_enabled": self.gpu_enabled,
"qat_enabled": self.qat_enabled,
"compression_enabled": self.compression_enabled,
"diffusion_enabled": self.diffusion_enabled,
}
return json.dumps(status, indent=2)
except Exception as e:
return f"β Status check failed: {str(e)}"
def get_telemetry_plot(self):
"""Generate telemetry plot."""
try:
if not any(self.telemetry_log.values()):
# Return empty plot
fig, ax = plt.subplots(figsize=(10, 6))
ax.text(0.5, 0.5, 'No telemetry data yet', ha='center', va='center', transform=ax.transAxes)
ax.set_title('Telemetry Metrics')
return fig
fig, axes = plot_telemetry(
self.telemetry_log,
k_floor=0.5, # Negentropy floor
c_floor=self.c_floor,
s_floor=self.s_floor
)
return fig
except Exception as e:
# Return error plot
fig, ax = plt.subplots(figsize=(10, 6))
ax.text(0.5, 0.5, f'Plot error: {str(e)}', ha='center', va='center', transform=ax.transAxes)
ax.set_title('Telemetry Metrics - Error')
return fig
def _update_telemetry(self, telemetry_dict):
"""Update telemetry log with new values."""
if not telemetry_dict:
return
step = len(self.telemetry_log["steps"])
self.telemetry_log["steps"].append(step)
# Extract metrics with defaults
self.telemetry_log["negentropy"].append(
float(telemetry_dict.get("negentropy", torch.tensor(0.0)).mean().item())
)
self.telemetry_log["lz_complexity"].append(
float(telemetry_dict.get("lz_complexity_logits", torch.tensor(0.0)).mean().item())
)
self.telemetry_log["symbiosis_score"].append(
float(telemetry_dict.get("symbiosis_score", torch.tensor(0.0)).mean().item())
)
def huggingface_upload(self, repo_id, hf_token=None):
"""Upload model to HuggingFace."""
if self.model is None:
return "β Model not initialized"
try:
if hf_token:
hf_login(hf_token)
save_checkpoint(self.model, repo_id, self.config)
return f"β
Model uploaded to {repo_id}"
except Exception as e:
return f"β HF upload failed: {str(e)}"
def huggingface_download(self, repo_id, hf_token=None):
"""Download model from HuggingFace."""
try:
if hf_token:
hf_login(hf_token)
with self.lock:
model, config = download_checkpoint(repo_id)
self.model = model
self.config = config
return f"β
Model downloaded from {repo_id}"
except Exception as e:
return f"β HF download failed: {str(e)}"
def mcp_request(self, endpoint, data=None, method="POST"):
"""Make request to MCP server if available."""
if not self.mcp_server_addr:
return "β MCP server not configured"
try:
url = self.mcp_server_addr.rstrip("/") + endpoint
if method == "POST":
resp = requests.post(url, json=data, timeout=30)
else:
resp = requests.get(url, timeout=30)
resp.raise_for_status()
if resp.headers.get("Content-Type", "").startswith("image/"):
return "β
MCP request completed (binary data)"
return f"β
MCP request completed: {resp.json()}"
except Exception as e:
return f"β MCP request failed: {str(e)}"
# Global manager instance
manager = GradioModelManager()
def create_gradio_interface():
"""Create the main Gradio interface with all BitTransformerLM features."""
# Helper functions for Gradio callbacks
def init_model_callback(d_model, nhead, num_layers, dim_feedforward, max_seq_len,
chunk_size, overlap, reversible, use_checkpoint, act_threshold,
c_floor, s_floor):
"""Initialize model with form parameters."""
config = {
"d_model": d_model,
"nhead": nhead,
"num_layers": num_layers,
"dim_feedforward": dim_feedforward,
"max_seq_len": max_seq_len,
"chunk_size": chunk_size if chunk_size > 0 else None,
"overlap": overlap,
"reversible": reversible,
"use_checkpoint": use_checkpoint,
"act_threshold": act_threshold
}
# Update safety floors
manager.c_floor = c_floor
manager.s_floor = s_floor
result = manager.init_model(config)
status = manager.get_model_status()
plot = manager.get_telemetry_plot()
return result, status, plot
def train_callback(bits_input, epochs, file_input):
"""Training callback with file upload support."""
if file_input is not None:
# Process uploaded file
try:
if file_input.name.endswith(('.txt', '.md')):
with open(file_input.name, 'r') as f:
text = f.read()
bits = text_to_bits(text)
else:
with open(file_input.name, 'rb') as f:
data = f.read()
# Convert bytes to bits
bits = []
for byte in data:
for i in range(8):
bits.append((byte >> (7-i)) & 1)
result, loss, ratio = manager.train_step(bits, epochs)
except Exception as e:
result = f"β File processing failed: {str(e)}"
loss, ratio = None, None
else:
result, loss, ratio = manager.train_step(bits_input, epochs)
status = manager.get_model_status()
plot = manager.get_telemetry_plot()
return result, status, plot, f"Compression Ratio: {ratio:.2f}" if ratio else ""
def inference_callback(bits_input, file_input):
"""Standard inference callback."""
if file_input is not None:
# Process uploaded file similar to training
try:
if file_input.name.endswith(('.txt', '.md')):
with open(file_input.name, 'r') as f:
text = f.read()
bits = text_to_bits(text)
else:
with open(file_input.name, 'rb') as f:
data = f.read()
bits = []
for byte in data:
for i in range(8):
bits.append((byte >> (7-i)) & 1)
result, output_bits = manager.inference(bits)
except Exception as e:
result = f"β File processing failed: {str(e)}"
output_bits = None
else:
result, output_bits = manager.inference(bits_input)
return result, str(output_bits) if output_bits else ""
def long_inference_callback(bits_input, ctx_bits, overlap):
"""Long sequence inference callback."""
result, output_bits = manager.inference(bits_input, long_inference=True,
ctx_bits=ctx_bits, overlap=overlap)
return result, str(output_bits) if output_bits else ""
def text_inference_callback(text_input):
"""Text-to-text inference callback."""
result, output_text = manager.text_inference(text_input)
return result, output_text if output_text else ""
# Create Gradio interface
with gr.Blocks(title="BitTransformerLM Dashboard",
theme=gr.themes.Soft()) as interface:
gr.Markdown("# π€ BitTransformerLM Interactive Dashboard")
gr.Markdown("*Experimental bit-native transformer with comprehensive training and inference capabilities*")
with gr.Tab("ποΈ Model Configuration"):
gr.Markdown("## Initialize BitTransformerLM")
with gr.Row():
with gr.Column():
d_model = gr.Number(label="d_model", value=64, info="Model width")
nhead = gr.Number(label="nhead", value=4, info="Attention heads")
num_layers = gr.Number(label="num_layers", value=2, info="Transformer layers")
dim_feedforward = gr.Number(label="dim_feedforward", value=256, info="FFN dimension")
with gr.Column():
max_seq_len = gr.Number(label="max_seq_len", value=512, info="Max sequence length")
chunk_size = gr.Number(label="chunk_size", value=0, info="Chunk size (0=auto)")
overlap = gr.Number(label="overlap", value=64, info="Sliding window overlap")
act_threshold = gr.Number(label="act_threshold", value=0.95, info="ACT halt threshold")
with gr.Row():
reversible = gr.Checkbox(label="Reversible Layers", value=False)
use_checkpoint = gr.Checkbox(label="Gradient Checkpointing", value=True)
with gr.Row():
c_floor = gr.Number(label="c_floor", value=0.3, info="Complexity safety floor")
s_floor = gr.Number(label="s_floor", value=0.5, info="Symbiosis safety floor")
init_btn = gr.Button("π Initialize Model", variant="primary")
init_output = gr.Textbox(label="Initialization Result", interactive=False)
with gr.Tab("π― Training"):
gr.Markdown("## Train BitTransformerLM")
with gr.Row():
with gr.Column():
train_bits = gr.Textbox(
label="Bit Input",
placeholder="0 1 0 1 or [0,1,0,1] or upload file",
lines=3
)
train_file = gr.File(label="Upload Training File", file_types=[".txt", ".md", ".bin"])
train_epochs = gr.Number(label="Epochs", value=1, minimum=1)
with gr.Column():
train_btn = gr.Button("π Start Training", variant="primary")
train_output = gr.Textbox(label="Training Result", interactive=False)
compression_output = gr.Textbox(label="Compression Info", interactive=False)
with gr.Tab("π§ Inference"):
with gr.Tab("Standard Inference"):
gr.Markdown("## Standard Inference")
with gr.Row():
with gr.Column():
infer_bits = gr.Textbox(
label="Bit Input",
placeholder="0 1 0 1 or [0,1,0,1]",
lines=3
)
infer_file = gr.File(label="Upload Inference File")
with gr.Column():
infer_btn = gr.Button("π― Run Inference", variant="primary")
infer_result = gr.Textbox(label="Result", interactive=False)
infer_output = gr.Textbox(label="Output Bits", lines=5, interactive=False)
with gr.Tab("Long Sequence Inference"):
gr.Markdown("## Long Sequence Inference")
with gr.Row():
with gr.Column():
long_bits = gr.Textbox(
label="Long Bit Sequence",
lines=5,
placeholder="Long sequence of bits..."
)
long_ctx_bits = gr.Number(label="Context Bits", value=4096)
long_overlap = gr.Number(label="Overlap", value=256)
with gr.Column():
long_infer_btn = gr.Button("π Run Long Inference", variant="primary")
long_result = gr.Textbox(label="Result", interactive=False)
long_output = gr.Textbox(label="Output Bits", lines=5, interactive=False)
with gr.Tab("Text Inference"):
gr.Markdown("## Text-to-Text Inference")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="Input Text",
placeholder="Enter text to process...",
lines=3
)
text_infer_btn = gr.Button("π Process Text", variant="primary")
with gr.Column():
text_result = gr.Textbox(label="Result", interactive=False)
text_output = gr.Textbox(
label="Output Text",
lines=5,
interactive=False
)
with gr.Tab("βοΈ Model Operations"):
with gr.Tab("Scale Model"):
gr.Markdown("## Scale Model Width")
with gr.Row():
width_mult = gr.Number(label="Width Multiplier", value=1.5, step=0.1)
scale_btn = gr.Button("π Scale Model", variant="secondary")
scale_output = gr.Textbox(label="Scaling Result", interactive=False)
with gr.Tab("Collapse Model"):
gr.Markdown("## Collapse Submodel")
with gr.Row():
with gr.Column():
cluster_bits = gr.Textbox(
label="Cluster Bits (JSON)",
placeholder='[[0,1,0,1],[1,1,0,0]]',
lines=3
)
target_params = gr.Textbox(
label="Target Parameters (JSON)",
placeholder='{"d_model":32,"nhead":4,"num_layers":1}',
lines=3
)
width_scale = gr.Number(label="Width Scale", value=1.0, step=0.1)
with gr.Column():
collapse_btn = gr.Button("ποΈ Collapse Model", variant="secondary")
collapse_output = gr.Textbox(label="Collapse Result", interactive=False)
with gr.Tab("π Monitoring"):
with gr.Row():
with gr.Column():
gr.Markdown("## Model Status")
status_output = gr.Code(label="Current Status", language="json")
refresh_btn = gr.Button("π Refresh Status")
with gr.Column():
gr.Markdown("## System Settings")
with gr.Row():
gpu_checkbox = gr.Checkbox(label="π₯ Enable GPU/FSDP", value=False)
qat_checkbox = gr.Checkbox(label="β‘ Enable 4-bit QAT", value=False)
with gr.Row():
compression_checkbox = gr.Checkbox(label="ποΈ Enable Compression", value=False)
diffusion_checkbox = gr.Checkbox(label="π Enable Diffusion Mode", value=False)
gr.Markdown("## π Telemetry Metrics")
telemetry_plot = gr.Plot(label="K/C/S Metrics Over Time")
with gr.Tab("βοΈ HuggingFace Integration"):
gr.Markdown("## HuggingFace Model Hub")
with gr.Row():
with gr.Column():
hf_repo_id = gr.Textbox(label="Repository ID", placeholder="username/model-name")
hf_token = gr.Textbox(label="HF Token (optional)", type="password")
with gr.Column():
with gr.Row():
hf_upload_btn = gr.Button("β¬οΈ Upload to HF", variant="secondary")
hf_download_btn = gr.Button("β¬οΈ Download from HF", variant="secondary")
hf_result = gr.Textbox(label="HuggingFace Result", interactive=False)
# Event handlers
init_btn.click(
init_model_callback,
inputs=[d_model, nhead, num_layers, dim_feedforward, max_seq_len,
chunk_size, overlap, reversible, use_checkpoint, act_threshold,
c_floor, s_floor],
outputs=[init_output, status_output, telemetry_plot]
)
train_btn.click(
train_callback,
inputs=[train_bits, train_epochs, train_file],
outputs=[train_output, status_output, telemetry_plot, compression_output]
)
infer_btn.click(
inference_callback,
inputs=[infer_bits, infer_file],
outputs=[infer_result, infer_output]
)
long_infer_btn.click(
long_inference_callback,
inputs=[long_bits, long_ctx_bits, long_overlap],
outputs=[long_result, long_output]
)
text_infer_btn.click(
text_inference_callback,
inputs=[text_input],
outputs=[text_result, text_output]
)
scale_btn.click(
manager.scale_model,
inputs=[width_mult],
outputs=[scale_output]
)
collapse_btn.click(
manager.collapse_model,
inputs=[cluster_bits, target_params, width_scale],
outputs=[collapse_output]
)
refresh_btn.click(
manager.get_model_status,
outputs=[status_output]
)
hf_upload_btn.click(
manager.huggingface_upload,
inputs=[hf_repo_id, hf_token],
outputs=[hf_result]
)
hf_download_btn.click(
manager.huggingface_download,
inputs=[hf_repo_id, hf_token],
outputs=[hf_result]
)
# System settings callbacks
def update_gpu_setting(enabled):
manager.gpu_enabled = enabled
return f"GPU/FSDP: {'Enabled' if enabled else 'Disabled'}"
def update_qat_setting(enabled):
manager.qat_enabled = enabled
return f"QAT: {'Enabled' if enabled else 'Disabled'}"
def update_compression_setting(enabled):
manager.compression_enabled = enabled
return f"Compression: {'Enabled' if enabled else 'Disabled'}"
def update_diffusion_setting(enabled):
manager.diffusion_enabled = enabled
return f"Diffusion: {'Enabled' if enabled else 'Disabled'}"
# Auto-refresh telemetry every 10 seconds
interface.load(
manager.get_telemetry_plot,
outputs=[telemetry_plot],
every=10
)
# Load initial status
interface.load(
manager.get_model_status,
outputs=[status_output]
)
return interface
def run_gradio_server(host="127.0.0.1", port=7860, share=False):
"""Run the Gradio server."""
interface = create_gradio_interface()
print("π Starting BitTransformerLM Gradio Dashboard...")
print(f"π Server will be available at: http://{host}:{port}")
if os.getenv("MCP_SERVER_ADDR"):
print(f"π MCP Server configured at: {os.getenv('MCP_SERVER_ADDR')}")
interface.launch(
server_name=host,
server_port=port,
share=share,
show_error=True,
debug=True
)
if __name__ == "__main__":
# Support both local development and HF Spaces
if os.getenv("SPACE_ID"):
# Running on HuggingFace Spaces
print("π€ Running on HuggingFace Spaces")
interface = create_gradio_interface()
interface.launch()
else:
# Local development
import argparse
parser = argparse.ArgumentParser(description="BitTransformerLM Gradio Dashboard")
parser.add_argument("--host", default="127.0.0.1", help="Host address")
parser.add_argument("--port", type=int, default=7860, help="Port number")
parser.add_argument("--share", action="store_true", help="Enable sharing")
args = parser.parse_args()
run_gradio_server(args.host, args.port, args.share) |