File size: 6,057 Bytes
3334875
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import argparse
import os
import subprocess
import sys
import time
import torch
from bit_transformer.utils import load_model
from bit_transformer.hf_checkpoint import (
    hf_login,
    save_checkpoint,
    download_checkpoint,
)
from bit_transformer import diffusion_inference
from bit_transformer.cli_standards import create_workflow_parser, BitTransformerCLI

from integration_schedule import integration_schedule


def _launch_dashboard() -> list[subprocess.Popen]:
    """Start MCP server and dashboard processes."""
    server = subprocess.Popen([sys.executable, "mcp_server.py"]) 
    time.sleep(2)
    dash_env = dict(os.environ)
    dash_env.setdefault("MCP_SERVER_ADDR", "http://127.0.0.1:7000")
    dashboard = subprocess.Popen(
        [sys.executable, "-m", "bit_transformer.dashboard_app"],
        env=dash_env,
    )
    return [server, dashboard]


def _terminate(procs: list[subprocess.Popen]) -> None:
    for p in procs:
        p.terminate()
        try:
            p.wait(timeout=5)
        except Exception:
            p.kill()


def run_workflow(
    steps: int = 10,
    max_len: int = 64,
    dataset_size: int = 128,
    *,
    launch_ui: bool = False,
    weights_path: str = "weights/model.pt.gz",
    collapsed_path: str = "weights/collapsed.pt.gz",
    plateau_steps: int = 0,
    epochs_per_step: int = 2,
    extra_steps: int = 3,
    collapse: bool = True,
    hf_repo: str | None = None,
    hf_token: str | None = None,
    diffusion: bool = False,
    noise_schedule: str = "linear",
    diffusion_steps: int = 8,
    diffusion_curriculum: bool = False,
    use_checkpoint: bool = True,
    reversible: bool = True,
    qat: bool = False,
) -> tuple:
    """Run the full integration schedule with optional dashboard.

    If ``qat`` is ``True`` the model undergoes 4-bit quantization-aware training
    before being converted to quantized weights for safety checks.
    """
    procs: list[subprocess.Popen] = []
    if launch_ui:
        procs = _launch_dashboard()
    if hf_repo:
        hf_login(token=hf_token)
        if not os.path.exists(weights_path):
            download_checkpoint(weights_path, repo_id=hf_repo)
    try:
        results, collapsed = integration_schedule(
            steps=steps,
            max_len=max_len,
            dataset_size=dataset_size,
            weights_path=weights_path,
            plateau_steps=plateau_steps,
            collapsed_path=collapsed_path,
            epochs_per_step=epochs_per_step,
            extra_steps=extra_steps,
            collapse=collapse,
            diffusion=diffusion,
            noise_schedule=noise_schedule,
            diffusion_steps=diffusion_steps,
            diffusion_curriculum=diffusion_curriculum,
            use_checkpoint=use_checkpoint,
            reversible=reversible,
            qat=qat,
        )
        model = load_model(weights_path)
        print("Workflow results:", results)
        if diffusion:
            sample = diffusion_inference(
                model, length=max_len, steps=diffusion_steps, schedule=noise_schedule
            )
            print("Diffusion inference output bits:", sample[0].tolist())
        if hf_repo:
            save_checkpoint(model, repo_id=hf_repo)
    finally:
        if launch_ui:
            _terminate(procs)
    return model, collapsed


if __name__ == "__main__":
    # Use standardized CLI parser
    parser = create_workflow_parser()
    
    # Add workflow-specific arguments
    workflow_group = parser.add_argument_group('Workflow Configuration')
    workflow_group.add_argument("--steps", type=int, default=10, 
                               help="Number of progressive scale-up steps")
    workflow_group.add_argument("--plateau-steps", type=int, default=0, 
                               help="Extra training steps at final size")
    workflow_group.add_argument("--epochs-per-step", type=int, default=2, 
                               help="Epochs per training step")
    workflow_group.add_argument("--extra-steps", type=int, default=3, 
                               help="Optimizer updates after each epoch")
    workflow_group.add_argument("--no-collapse", action="store_true", 
                               help="Skip collapsed model generation")
    workflow_group.add_argument("--dashboard", action="store_true", 
                               help="Launch MCP server and dashboard UI")
    
    # Add advanced optimization arguments
    opt_group = parser.add_argument_group('Advanced Optimization')
    opt_group.add_argument("--no-checkpoint", action="store_true", 
                          help="Disable gradient checkpointing (faster but more memory)")
    opt_group.add_argument("--no-reversible", action="store_true", 
                          help="Use standard transformer blocks instead of reversible layers")
    opt_group.add_argument("--qat", action="store_true", 
                          help="Enable 4-bit quantization-aware training")
                          
    # Override some defaults for workflow context
    parser.set_defaults(
        seq_length=64,  # Use seq-length instead of max-len
        dataset_size=128,
        weights_path="weights/model.pt.gz"
    )
    args = parser.parse_args()

    run_workflow(
        args.steps,
        args.seq_length,  # Standardized name
        args.dataset_size,
        launch_ui=args.dashboard,
        weights_path=args.weights_path,
        collapsed_path=getattr(args, 'collapsed_path', 'weights/collapsed.pt.gz'),
        plateau_steps=args.plateau_steps,
        epochs_per_step=args.epochs_per_step,
        extra_steps=args.extra_steps,
        collapse=not args.no_collapse,
        hf_repo=args.hf_repo,
        hf_token=args.hf_token,
        diffusion=args.diffusion_mode,  # Standardized name
        noise_schedule=args.noise_schedule,
        diffusion_steps=args.diffusion_steps,
        diffusion_curriculum=args.diffusion_curriculum,
        use_checkpoint=not args.no_checkpoint,
        reversible=not args.no_reversible,
        qat=args.qat,
    )