File size: 7,510 Bytes
36c78b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
"""Legacy progressive scale-up demo.

This script is retained for historical reference but has been superseded by
``integration_schedule.py`` which provides a more flexible scaling workflow.
"""

import argparse
import warnings
import torch
import torch.nn.functional as F
from bit_transformer import (
    BitTransformerLM,
    configure_optimizer,
    expand_model,
    text_to_bits,
)
from bit_transformer.training import train_loop as basic_train

warnings.warn(
    "progressive_scaleup.py is deprecated; use integration_schedule.py instead.",
    DeprecationWarning,
    stacklevel=2,
)


def progressive_scale_up(
    eps: float = 0.65,
    steps: int = 2,
    width_mult: float = 1.0,
    forward_kwargs: dict | None = None,
) -> None:
    """Demonstrate automatic scaling of the model on random data."""
    params = dict(d_model=32, nhead=4, num_layers=1, dim_feedforward=64, max_seq_len=16)
    model = BitTransformerLM(**params)
    steps_per_epoch = 64 // 8
    optimizer, scheduler = configure_optimizer(
        model, lr=1e-3, total_steps=steps * steps_per_epoch
    )

    train = torch.randint(0, 2, (64, params["max_seq_len"]), dtype=torch.long)
    valid = torch.randint(0, 2, (16, params["max_seq_len"]), dtype=torch.long)

    for step in range(steps):
        # one epoch over train
        basic_train(
            model,
            train,
            epochs=1,
            compress_prob=0.5,
            log=False,
            forward_kwargs=forward_kwargs,
        )

        with torch.no_grad():
            logits, _ = model(valid, **(forward_kwargs or {}))
            pred = logits[:, :-1, :].reshape(-1, 2)
            target = valid[:, 1:].reshape(-1)
            val_loss = F.cross_entropy(pred, target).item()
        print(f"Step {step} validation loss: {val_loss:.4f}")
        if val_loss < eps:
            params["num_layers"] *= 2
            params["d_model"] = int(params["d_model"] * width_mult)
            params["dim_feedforward"] = int(params["dim_feedforward"] * width_mult)
            model = expand_model(model, params)
            optimizer, scheduler = configure_optimizer(
                model, lr=1e-3, total_steps=steps * steps_per_epoch
            )
        print(
            "Scaled model to", params["num_layers"], "layers and width", params["d_model"]
        )


def progressive_scale_up_text(
    improve_thresh: float = 0.01,
    steps: int = 2,
    width_mult: float = 2.0,
    max_len: int = 64,
    dataset_size: int = 512,
    forward_kwargs: dict | None = None,
) -> None:
    """Scale up using WikiText2 lines converted to bits.

    Parameters
    ----------
    improve_thresh: float
        Relative validation loss improvement required to avoid scaling.
        If improvement is <= this threshold, model size is increased.
    steps: int
        Number of training steps.
    width_mult: float
        Multiplier applied when increasing model width.
    max_len: int
        Initial sequence length.
    dataset_size: int
        Number of training lines to load from WikiText2.
    forward_kwargs: dict | None
        Extra keyword arguments for the forward pass.
    """
    from datasets import load_dataset

    ds = load_dataset("wikitext", "wikitext-2-raw-v1")
    train_iter = ds["train"]["text"]
    valid_iter = ds["validation"]["text"]

    train_lines = []
    for line in train_iter:
        train_lines.append(line)
        if len(train_lines) >= dataset_size:
            break

    valid_lines = []
    for line in valid_iter:
        valid_lines.append(line)
        if len(valid_lines) >= dataset_size // 4:
            break

    def lines_to_tensor(lines: list[str], length: int) -> torch.Tensor:
        seqs = []
        for text in lines:
            bits = text_to_bits(text)[:length]
            if len(bits) < length:
                bits.extend([0] * (length - len(bits)))
            seqs.append(bits)
        return torch.tensor(seqs, dtype=torch.long)

    train = lines_to_tensor(train_lines, max_len)
    valid = lines_to_tensor(valid_lines, max_len)

    params = dict(
        d_model=32,
        nhead=4,
        num_layers=1,
        dim_feedforward=64,
        max_seq_len=max_len,
    )
    model = BitTransformerLM(**params)
    steps_per_epoch = len(train) // 8
    optimizer, scheduler = configure_optimizer(
        model, lr=1e-3, total_steps=steps * max(1, steps_per_epoch)
    )

    prev_loss: float | None = None
    scale_length = True

    for step in range(steps):
        basic_train(
            model,
            train,
            epochs=1,
            compress_prob=0.5,
            log=False,
            forward_kwargs=forward_kwargs,
        )

        with torch.no_grad():
            logits, _ = model(valid, **(forward_kwargs or {}))
            pred = logits[:, :-1, :].reshape(-1, 2)
            target = valid[:, 1:].reshape(-1)
            val_loss = F.cross_entropy(pred, target).item()
        print(f"Step {step} validation loss: {val_loss:.4f}")
        if prev_loss is not None:
            improvement = (prev_loss - val_loss) / max(prev_loss, 1e-8)
            if improvement <= improve_thresh:
                if scale_length:
                    params["max_seq_len"] *= 2
                    train = lines_to_tensor(train_lines, params["max_seq_len"])
                    valid = lines_to_tensor(valid_lines, params["max_seq_len"])
                    model = model.double_length()
                    steps_per_epoch = len(train) // 8
                    scale_type = "length"
                else:
                    params["d_model"] = int(params["d_model"] * width_mult)
                    params["dim_feedforward"] = int(params["dim_feedforward"] * width_mult)
                    model = expand_model(model, params)
                    scale_type = "width"
                optimizer, scheduler = configure_optimizer(
                    model, lr=1e-3, total_steps=steps * max(1, steps_per_epoch)
                )
                scale_length = not scale_length
                param_count = sum(p.numel() for p in model.parameters())
                print(
                    f"Scaled {scale_type}; seq_len={params['max_seq_len']} width={params['d_model']} params={param_count}"
                )
        prev_loss = val_loss


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Progressively scale model length and width")
    parser.add_argument("--steps", type=int, default=2, help="number of training steps")
    parser.add_argument(
        "--improve-thresh",
        type=float,
        default=0.01,
        help="relative loss improvement required to avoid scaling",
    )
    parser.add_argument(
        "--width-mult", type=float, default=2.0, help="width multiplier when scaling"
    )
    parser.add_argument("--causal", action="store_true", help="use causal attention during training")
    parser.add_argument("--wikitext", action="store_true", help="use WikiText2 dataset")
    args = parser.parse_args()
    if args.wikitext:
        progressive_scale_up_text(
            improve_thresh=args.improve_thresh,
            steps=args.steps,
            width_mult=args.width_mult,
            forward_kwargs={"causal": args.causal} if args.causal else None,
        )
    else:
        progressive_scale_up(
            eps=args.improve_thresh,
            steps=args.steps,
            width_mult=args.width_mult,
            forward_kwargs={"causal": args.causal} if args.causal else None,
        )