File size: 15,393 Bytes
36c78b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
import io
import os
import gzip
import uuid
import traceback
from concurrent.futures import ThreadPoolExecutor
from flask import Flask, request, jsonify, send_file
import matplotlib.pyplot as plt
import torch
from bit_transformer.dashboard_app import ModelManager
from bit_transformer.dashboard import plot_telemetry
from bit_transformer.hf_checkpoint import hf_login, save_checkpoint, download_checkpoint
from bit_transformer.optimization import configure_optimizer
from bit_transformer.bit_io import text_to_bits
from bit_transformer.dataset_builder import BitTransformerDatasetBuilder, create_bittransformerlm_dataset
app = Flask(__name__)
manager = ModelManager()
# background job management
executor = ThreadPoolExecutor(max_workers=4)
jobs: dict[str, dict] = {}
def _submit_job(fn, *args, **kwargs) -> str:
"""Schedule a function for background execution and return a job id."""
job_id = str(uuid.uuid4())
jobs[job_id] = {"status": "queued", "result": None, "error": None, "logs": []}
def wrapper():
jobs[job_id]["status"] = "running"
try:
jobs[job_id]["result"] = fn(*args, **kwargs)
jobs[job_id]["status"] = "completed"
except Exception as err: # pragma: no cover - captured for client
jobs[job_id]["status"] = "error"
jobs[job_id]["error"] = str(err)
jobs[job_id]["trace"] = traceback.format_exc()
executor.submit(wrapper)
return job_id
@app.errorhandler(Exception)
def handle_exception(err):
"""Return JSON error responses with stack traces."""
return (
jsonify({"error": str(err), "trace": traceback.format_exc()}),
getattr(err, "code", 500),
)
@app.route("/init", methods=["POST"])
def init_model():
data = request.json or {}
int_fields = {
"d_model",
"nhead",
"num_layers",
"dim_feedforward",
"max_seq_len",
"chunk_size",
"overlap",
}
float_fields = {"act_threshold"}
bool_fields = {"reversible", "use_checkpoint"}
params = {}
for k, v in data.items():
if v is None:
params[k] = None
elif k in int_fields:
params[k] = int(v)
elif k in float_fields:
params[k] = float(v)
elif k in bool_fields:
params[k] = bool(v)
else:
params[k] = v
manager.init_model(params)
return jsonify({"status": "initialized", "params": params})
@app.route("/train", methods=["POST"])
def train_model():
bits = request.json["bits"]
def task():
tensor = torch.tensor(bits, dtype=torch.long)
loss, ratio = manager.train_step(tensor)
return {"loss": loss, "ratio": ratio}
job_id = _submit_job(task)
return jsonify({"job_id": job_id})
@app.route("/train_epochs", methods=["POST"])
def train_epochs_route():
data = request.json
bits = data["bits"]
epochs = int(data.get("epochs", 1))
compress_prob = float(data.get("compress_prob", 0.5))
direct_prob = float(data.get("direct_prob", 0.0))
def task():
tensor = torch.tensor(bits, dtype=torch.long)
metrics = manager.train_epochs(
tensor,
epochs=epochs,
compress_prob=compress_prob,
direct_prob=direct_prob,
)
return {"metrics": metrics}
job_id = _submit_job(task)
return jsonify({"job_id": job_id})
@app.route("/scale_up", methods=["POST"])
def scale_up():
width_mult = float(request.json.get("width_mult", 1.0))
def task():
manager.scale_up(width_mult)
return {
"status": "scaled",
"layers": manager.model.num_layers,
"d_model": manager.model.d_model,
}
job_id = _submit_job(task)
return jsonify({"job_id": job_id})
@app.route("/collapse", methods=["POST"])
def collapse_model():
cluster_bits = request.json["clusters"]
params = {k: int(v) for k, v in request.json["params"].items()}
width_scale = float(request.json.get("width_scale", 1.0))
def task():
manager.collapse(cluster_bits, params, width_scale)
return {"status": "collapsed"}
job_id = _submit_job(task)
return jsonify({"job_id": job_id})
@app.route("/job/<job_id>", methods=["GET"])
def get_job(job_id: str):
job = jobs.get(job_id)
if job is None:
return jsonify({"error": "not found"}), 404
return jsonify(job)
@app.route("/jobs", methods=["GET"])
def list_jobs():
return jsonify(jobs)
@app.route("/lambdas", methods=["GET", "POST"])
def update_lambdas():
if request.method == "POST":
data = request.json
manager.set_lambdas(float(data["lambda_K"]), float(data["lambda_C"]), float(data["lambda_S"]))
return jsonify({"status": "updated"})
else:
return jsonify({
"lambda_K": manager.lambda_K,
"lambda_C": manager.lambda_C,
"lambda_S": manager.lambda_S,
})
@app.route("/diffusion", methods=["GET", "POST"])
def update_diffusion():
if request.method == "POST":
manager.set_diffusion(bool(request.json.get("diffusion", False)))
return jsonify({"status": "updated"})
return jsonify({"diffusion": manager.diffusion})
@app.route("/qat", methods=["GET", "POST"])
def update_qat():
if request.method == "POST":
manager.set_qat(bool(request.json.get("qat", False)))
return jsonify({"status": "updated"})
return jsonify({"qat": manager.qat})
@app.route("/gpu", methods=["GET", "POST"])
def update_gpu():
if request.method == "POST":
manager.set_gpu(bool(request.json.get("use_gpu", False)))
return jsonify({"status": "updated"})
return jsonify({"use_gpu": manager.use_gpu})
@app.route("/infer", methods=["POST"])
def inference():
bits = torch.tensor(request.json["bits"], dtype=torch.long)
result = manager.infer(bits)
return jsonify(result)
@app.route("/infer_long", methods=["POST"])
def inference_long():
bits = torch.tensor(request.json["bits"], dtype=torch.long)
ctx = int(request.json.get("ctx_bits", 4096))
overlap = int(request.json.get("overlap", 256))
result = manager.infer_long(bits, ctx_bits=ctx, overlap=overlap)
return jsonify(result)
@app.route("/infer_text", methods=["POST"])
def inference_text():
text = request.json.get("text", "")
result = manager.infer_text(text)
return jsonify(result)
@app.route("/status", methods=["GET"])
def status():
return jsonify(manager.get_status())
@app.route("/model_config", methods=["GET"])
def model_config():
return jsonify(manager.get_model_config())
@app.route("/metrics", methods=["GET"])
def metrics():
return jsonify(manager.get_metrics())
@app.route("/save_checkpoint", methods=["POST"])
def save_checkpoint_route():
repo_id = request.json.get("repo_id")
token = request.json.get("token") or os.getenv("HF_TOKEN")
if manager.model is None:
return jsonify({"error": "model not initialized"}), 400
if token:
hf_login(token=token)
save_checkpoint(manager.model, repo_id=repo_id)
return jsonify({"status": "saved"})
@app.route("/download_checkpoint", methods=["POST"])
def download_checkpoint_route():
repo_id = request.json.get("repo_id")
token = request.json.get("token") or os.getenv("HF_TOKEN")
if token:
hf_login(token=token)
dest = manager.weights_path + ".gz"
ok = download_checkpoint(dest, repo_id=repo_id)
if not ok:
return jsonify({"status": "failed"}), 500
if manager.model is None:
return jsonify({"status": "downloaded", "loaded": False})
with gzip.open(dest, "rb") as f:
state = torch.load(f, map_location="cpu")
manager.model.load_state_dict(state)
manager.optimizer, manager.scheduler = configure_optimizer(
manager.model, lr=1e-3, total_steps=manager.total_steps
)
manager._apply_device()
manager._save_state()
return jsonify({"status": "downloaded", "loaded": True})
@app.route("/plot.png")
def plot_png():
fig, _ = plot_telemetry(manager.metrics)
buf = io.BytesIO()
fig.savefig(buf, format="png")
plt.close(fig)
buf.seek(0)
return send_file(buf, mimetype="image/png")
@app.route("/text_to_bits", methods=["POST"])
def text_to_bits_route():
text = request.json.get("text", "")
if len(text) > 100_000:
return jsonify({"error": "text too large"}), 413
return jsonify({"bits": text_to_bits(text)})
@app.route("/dataset", methods=["GET"])
def dataset_route():
name = request.args.get("name", "")
split = request.args.get("split", "train")
size = int(request.args.get("size", 1))
seq_len = int(request.args.get("seq_len", 64))
if size * seq_len > 1_000_000:
return jsonify({"error": "dataset too large"}), 413
if name == "wikitext2":
try:
from datasets import load_dataset
ds = load_dataset("wikitext", "wikitext-2-raw-v1", split=split)
lines = [t for t in ds["text"] if t.strip()][:size]
except Exception:
bits = torch.randint(0, 2, (size, seq_len), dtype=torch.long)
return jsonify({"bits": bits.tolist()})
bits_list = []
for text in lines:
b = text_to_bits(text)[:seq_len]
if len(b) < seq_len:
b.extend([0] * (seq_len - len(b)))
bits_list.append(b)
if len(bits_list) < size:
pad = size - len(bits_list)
bits_list.extend(torch.randint(0, 2, (pad, seq_len), dtype=torch.long).tolist())
return jsonify({"bits": bits_list})
return jsonify({"error": "unknown dataset"}), 400
# Dataset Management Endpoints
@app.route("/dataset/create", methods=["POST"])
def create_dataset():
"""Create and upload a new BitTransformerLM dataset."""
data = request.json or {}
hf_token = data.get("hf_token") or os.getenv("HF_TOKEN")
repo_id = data.get("repo_id", "BitTransformerLM")
source_texts = data.get("source_texts", None)
if not hf_token:
return jsonify({"error": "HF token required"}), 400
def task():
try:
dataset_url = create_bittransformerlm_dataset(
hf_token=hf_token,
repo_id=repo_id,
source_texts=source_texts
)
return {
"status": "success",
"dataset_url": dataset_url,
"repo_id": repo_id
}
except Exception as e:
return {
"status": "error",
"error": str(e)
}
job_id = _submit_job(task)
return jsonify({"job_id": job_id, "message": "Dataset creation started"})
@app.route("/dataset/builder", methods=["POST"])
def create_dataset_builder():
"""Initialize a dataset builder for custom dataset creation."""
data = request.json or {}
hf_token = data.get("hf_token") or os.getenv("HF_TOKEN")
repo_id = data.get("repo_id", "BitTransformerLM")
if not hf_token:
return jsonify({"error": "HF token required"}), 400
try:
builder = BitTransformerDatasetBuilder(hf_token, repo_id)
# Store builder configuration
builder_info = {
"repo_id": repo_id,
"config": builder.config,
"status": "ready"
}
return jsonify({
"status": "builder_created",
"builder_info": builder_info
})
except Exception as e:
return jsonify({"error": str(e)}), 500
@app.route("/dataset/generate", methods=["POST"])
def generate_dataset_samples():
"""Generate specific types of dataset samples."""
data = request.json or {}
sample_type = data.get("type", "text_to_bits") # text_to_bits, synthetic, safety, compression
count = int(data.get("count", 100))
max_len = int(data.get("max_len", 256))
texts = data.get("texts", None)
if count > 5000:
return jsonify({"error": "count too large, max 5000"}), 400
def task():
try:
# Create temporary builder (no upload)
builder = BitTransformerDatasetBuilder("dummy_token", "temp")
if sample_type == "text_to_bits":
if not texts:
texts = builder._get_default_texts()[:count]
samples = builder.generate_text_to_bits_data(texts[:count], max_len)
elif sample_type == "synthetic":
samples = builder.generate_synthetic_patterns(count, max_len)
elif sample_type == "safety":
samples = builder.generate_safety_benchmarks(count)
elif sample_type == "compression":
# Need base samples first
base_texts = builder._get_default_texts()[:50]
base_samples = builder.generate_text_to_bits_data(base_texts, max_len)
samples = builder.generate_compression_variants(base_samples)[:count]
else:
return {"error": f"Unknown sample type: {sample_type}"}
return {
"status": "success",
"samples": samples[:10], # Return first 10 for preview
"total_generated": len(samples),
"sample_type": sample_type
}
except Exception as e:
return {"error": str(e)}
job_id = _submit_job(task)
return jsonify({"job_id": job_id, "message": f"Generating {sample_type} samples"})
@app.route("/dataset/info", methods=["GET"])
def dataset_info():
"""Get information about available dataset generation options."""
return jsonify({
"sample_types": [
{
"type": "text_to_bits",
"description": "Convert text to parity-protected bit sequences",
"parameters": ["texts", "max_len"]
},
{
"type": "synthetic",
"description": "Generate synthetic bit patterns",
"parameters": ["count", "max_len"],
"patterns": ["alternating", "blocks", "fibonacci", "prime_based", "random_walk"]
},
{
"type": "safety",
"description": "Generate safety benchmark sequences",
"parameters": ["count"],
"categories": ["low_entropy", "medium_entropy", "high_entropy", "edge_cases"]
},
{
"type": "compression",
"description": "Generate compressed variants of base sequences",
"parameters": ["count", "compression_ratios"]
}
],
"default_config": {
"max_sequence_length": 512,
"total_samples": 25000,
"safety_thresholds": {
"min_negentropy": 0.1,
"max_lz_complexity": 0.9,
"min_symbiosis": 0.3
}
}
})
@app.route("/health")
def health_check():
return jsonify({"status": "ok"})
def run_mcp_server(host: str = "0.0.0.0", port: int = 7000) -> None:
app.run(host=host, port=port, debug=True)
if __name__ == "__main__":
import torch
run_mcp_server()
|