File size: 15,393 Bytes
36c78b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
import io
import os
import gzip
import uuid
import traceback
from concurrent.futures import ThreadPoolExecutor
from flask import Flask, request, jsonify, send_file
import matplotlib.pyplot as plt
import torch

from bit_transformer.dashboard_app import ModelManager
from bit_transformer.dashboard import plot_telemetry
from bit_transformer.hf_checkpoint import hf_login, save_checkpoint, download_checkpoint
from bit_transformer.optimization import configure_optimizer
from bit_transformer.bit_io import text_to_bits
from bit_transformer.dataset_builder import BitTransformerDatasetBuilder, create_bittransformerlm_dataset

app = Flask(__name__)
manager = ModelManager()

# background job management
executor = ThreadPoolExecutor(max_workers=4)
jobs: dict[str, dict] = {}


def _submit_job(fn, *args, **kwargs) -> str:
    """Schedule a function for background execution and return a job id."""
    job_id = str(uuid.uuid4())
    jobs[job_id] = {"status": "queued", "result": None, "error": None, "logs": []}

    def wrapper():
        jobs[job_id]["status"] = "running"
        try:
            jobs[job_id]["result"] = fn(*args, **kwargs)
            jobs[job_id]["status"] = "completed"
        except Exception as err:  # pragma: no cover - captured for client
            jobs[job_id]["status"] = "error"
            jobs[job_id]["error"] = str(err)
            jobs[job_id]["trace"] = traceback.format_exc()

    executor.submit(wrapper)
    return job_id


@app.errorhandler(Exception)
def handle_exception(err):
    """Return JSON error responses with stack traces."""
    return (
        jsonify({"error": str(err), "trace": traceback.format_exc()}),
        getattr(err, "code", 500),
    )


@app.route("/init", methods=["POST"])
def init_model():
    data = request.json or {}
    int_fields = {
        "d_model",
        "nhead",
        "num_layers",
        "dim_feedforward",
        "max_seq_len",
        "chunk_size",
        "overlap",
    }
    float_fields = {"act_threshold"}
    bool_fields = {"reversible", "use_checkpoint"}
    params = {}
    for k, v in data.items():
        if v is None:
            params[k] = None
        elif k in int_fields:
            params[k] = int(v)
        elif k in float_fields:
            params[k] = float(v)
        elif k in bool_fields:
            params[k] = bool(v)
        else:
            params[k] = v
    manager.init_model(params)
    return jsonify({"status": "initialized", "params": params})

@app.route("/train", methods=["POST"])
def train_model():
    bits = request.json["bits"]

    def task():
        tensor = torch.tensor(bits, dtype=torch.long)
        loss, ratio = manager.train_step(tensor)
        return {"loss": loss, "ratio": ratio}

    job_id = _submit_job(task)
    return jsonify({"job_id": job_id})


@app.route("/train_epochs", methods=["POST"])
def train_epochs_route():
    data = request.json
    bits = data["bits"]
    epochs = int(data.get("epochs", 1))
    compress_prob = float(data.get("compress_prob", 0.5))
    direct_prob = float(data.get("direct_prob", 0.0))

    def task():
        tensor = torch.tensor(bits, dtype=torch.long)
        metrics = manager.train_epochs(
            tensor,
            epochs=epochs,
            compress_prob=compress_prob,
            direct_prob=direct_prob,
        )
        return {"metrics": metrics}

    job_id = _submit_job(task)
    return jsonify({"job_id": job_id})

@app.route("/scale_up", methods=["POST"])
def scale_up():
    width_mult = float(request.json.get("width_mult", 1.0))

    def task():
        manager.scale_up(width_mult)
        return {
            "status": "scaled",
            "layers": manager.model.num_layers,
            "d_model": manager.model.d_model,
        }

    job_id = _submit_job(task)
    return jsonify({"job_id": job_id})

@app.route("/collapse", methods=["POST"])
def collapse_model():
    cluster_bits = request.json["clusters"]
    params = {k: int(v) for k, v in request.json["params"].items()}
    width_scale = float(request.json.get("width_scale", 1.0))

    def task():
        manager.collapse(cluster_bits, params, width_scale)
        return {"status": "collapsed"}

    job_id = _submit_job(task)
    return jsonify({"job_id": job_id})


@app.route("/job/<job_id>", methods=["GET"])
def get_job(job_id: str):
    job = jobs.get(job_id)
    if job is None:
        return jsonify({"error": "not found"}), 404
    return jsonify(job)


@app.route("/jobs", methods=["GET"])
def list_jobs():
    return jsonify(jobs)

@app.route("/lambdas", methods=["GET", "POST"])
def update_lambdas():
    if request.method == "POST":
        data = request.json
        manager.set_lambdas(float(data["lambda_K"]), float(data["lambda_C"]), float(data["lambda_S"]))
        return jsonify({"status": "updated"})
    else:
        return jsonify({
            "lambda_K": manager.lambda_K,
            "lambda_C": manager.lambda_C,
            "lambda_S": manager.lambda_S,
        })

@app.route("/diffusion", methods=["GET", "POST"])
def update_diffusion():
    if request.method == "POST":
        manager.set_diffusion(bool(request.json.get("diffusion", False)))
        return jsonify({"status": "updated"})
    return jsonify({"diffusion": manager.diffusion})


@app.route("/qat", methods=["GET", "POST"])
def update_qat():
    if request.method == "POST":
        manager.set_qat(bool(request.json.get("qat", False)))
        return jsonify({"status": "updated"})
    return jsonify({"qat": manager.qat})


@app.route("/gpu", methods=["GET", "POST"])
def update_gpu():
    if request.method == "POST":
        manager.set_gpu(bool(request.json.get("use_gpu", False)))
        return jsonify({"status": "updated"})
    return jsonify({"use_gpu": manager.use_gpu})

@app.route("/infer", methods=["POST"])
def inference():
    bits = torch.tensor(request.json["bits"], dtype=torch.long)
    result = manager.infer(bits)
    return jsonify(result)


@app.route("/infer_long", methods=["POST"])
def inference_long():
    bits = torch.tensor(request.json["bits"], dtype=torch.long)
    ctx = int(request.json.get("ctx_bits", 4096))
    overlap = int(request.json.get("overlap", 256))
    result = manager.infer_long(bits, ctx_bits=ctx, overlap=overlap)
    return jsonify(result)

@app.route("/infer_text", methods=["POST"])
def inference_text():
    text = request.json.get("text", "")
    result = manager.infer_text(text)
    return jsonify(result)

@app.route("/status", methods=["GET"])
def status():
    return jsonify(manager.get_status())


@app.route("/model_config", methods=["GET"])
def model_config():
    return jsonify(manager.get_model_config())


@app.route("/metrics", methods=["GET"])
def metrics():
    return jsonify(manager.get_metrics())


@app.route("/save_checkpoint", methods=["POST"])
def save_checkpoint_route():
    repo_id = request.json.get("repo_id")
    token = request.json.get("token") or os.getenv("HF_TOKEN")
    if manager.model is None:
        return jsonify({"error": "model not initialized"}), 400
    if token:
        hf_login(token=token)
    save_checkpoint(manager.model, repo_id=repo_id)
    return jsonify({"status": "saved"})


@app.route("/download_checkpoint", methods=["POST"])
def download_checkpoint_route():
    repo_id = request.json.get("repo_id")
    token = request.json.get("token") or os.getenv("HF_TOKEN")
    if token:
        hf_login(token=token)
    dest = manager.weights_path + ".gz"
    ok = download_checkpoint(dest, repo_id=repo_id)
    if not ok:
        return jsonify({"status": "failed"}), 500
    if manager.model is None:
        return jsonify({"status": "downloaded", "loaded": False})
    with gzip.open(dest, "rb") as f:
        state = torch.load(f, map_location="cpu")
    manager.model.load_state_dict(state)
    manager.optimizer, manager.scheduler = configure_optimizer(
        manager.model, lr=1e-3, total_steps=manager.total_steps
    )
    manager._apply_device()
    manager._save_state()
    return jsonify({"status": "downloaded", "loaded": True})

@app.route("/plot.png")
def plot_png():
    fig, _ = plot_telemetry(manager.metrics)
    buf = io.BytesIO()
    fig.savefig(buf, format="png")
    plt.close(fig)
    buf.seek(0)
    return send_file(buf, mimetype="image/png")


@app.route("/text_to_bits", methods=["POST"])
def text_to_bits_route():
    text = request.json.get("text", "")
    if len(text) > 100_000:
        return jsonify({"error": "text too large"}), 413
    return jsonify({"bits": text_to_bits(text)})


@app.route("/dataset", methods=["GET"])
def dataset_route():
    name = request.args.get("name", "")
    split = request.args.get("split", "train")
    size = int(request.args.get("size", 1))
    seq_len = int(request.args.get("seq_len", 64))
    if size * seq_len > 1_000_000:
        return jsonify({"error": "dataset too large"}), 413
    if name == "wikitext2":
        try:
            from datasets import load_dataset

            ds = load_dataset("wikitext", "wikitext-2-raw-v1", split=split)
            lines = [t for t in ds["text"] if t.strip()][:size]
        except Exception:
            bits = torch.randint(0, 2, (size, seq_len), dtype=torch.long)
            return jsonify({"bits": bits.tolist()})
        bits_list = []
        for text in lines:
            b = text_to_bits(text)[:seq_len]
            if len(b) < seq_len:
                b.extend([0] * (seq_len - len(b)))
            bits_list.append(b)
        if len(bits_list) < size:
            pad = size - len(bits_list)
            bits_list.extend(torch.randint(0, 2, (pad, seq_len), dtype=torch.long).tolist())
        return jsonify({"bits": bits_list})
    return jsonify({"error": "unknown dataset"}), 400


# Dataset Management Endpoints

@app.route("/dataset/create", methods=["POST"])
def create_dataset():
    """Create and upload a new BitTransformerLM dataset."""
    data = request.json or {}
    
    hf_token = data.get("hf_token") or os.getenv("HF_TOKEN")
    repo_id = data.get("repo_id", "BitTransformerLM")
    source_texts = data.get("source_texts", None)
    
    if not hf_token:
        return jsonify({"error": "HF token required"}), 400
    
    def task():
        try:
            dataset_url = create_bittransformerlm_dataset(
                hf_token=hf_token,
                repo_id=repo_id,
                source_texts=source_texts
            )
            return {
                "status": "success",
                "dataset_url": dataset_url,
                "repo_id": repo_id
            }
        except Exception as e:
            return {
                "status": "error",
                "error": str(e)
            }
    
    job_id = _submit_job(task)
    return jsonify({"job_id": job_id, "message": "Dataset creation started"})


@app.route("/dataset/builder", methods=["POST"])
def create_dataset_builder():
    """Initialize a dataset builder for custom dataset creation."""
    data = request.json or {}
    
    hf_token = data.get("hf_token") or os.getenv("HF_TOKEN")
    repo_id = data.get("repo_id", "BitTransformerLM")
    
    if not hf_token:
        return jsonify({"error": "HF token required"}), 400
    
    try:
        builder = BitTransformerDatasetBuilder(hf_token, repo_id)
        
        # Store builder configuration
        builder_info = {
            "repo_id": repo_id,
            "config": builder.config,
            "status": "ready"
        }
        
        return jsonify({
            "status": "builder_created",
            "builder_info": builder_info
        })
        
    except Exception as e:
        return jsonify({"error": str(e)}), 500


@app.route("/dataset/generate", methods=["POST"])
def generate_dataset_samples():
    """Generate specific types of dataset samples."""
    data = request.json or {}
    
    sample_type = data.get("type", "text_to_bits")  # text_to_bits, synthetic, safety, compression
    count = int(data.get("count", 100))
    max_len = int(data.get("max_len", 256))
    texts = data.get("texts", None)
    
    if count > 5000:
        return jsonify({"error": "count too large, max 5000"}), 400
    
    def task():
        try:
            # Create temporary builder (no upload)
            builder = BitTransformerDatasetBuilder("dummy_token", "temp")
            
            if sample_type == "text_to_bits":
                if not texts:
                    texts = builder._get_default_texts()[:count]
                samples = builder.generate_text_to_bits_data(texts[:count], max_len)
                
            elif sample_type == "synthetic":
                samples = builder.generate_synthetic_patterns(count, max_len)
                
            elif sample_type == "safety":
                samples = builder.generate_safety_benchmarks(count)
                
            elif sample_type == "compression":
                # Need base samples first
                base_texts = builder._get_default_texts()[:50]
                base_samples = builder.generate_text_to_bits_data(base_texts, max_len)
                samples = builder.generate_compression_variants(base_samples)[:count]
                
            else:
                return {"error": f"Unknown sample type: {sample_type}"}
            
            return {
                "status": "success",
                "samples": samples[:10],  # Return first 10 for preview
                "total_generated": len(samples),
                "sample_type": sample_type
            }
            
        except Exception as e:
            return {"error": str(e)}
    
    job_id = _submit_job(task)
    return jsonify({"job_id": job_id, "message": f"Generating {sample_type} samples"})


@app.route("/dataset/info", methods=["GET"])
def dataset_info():
    """Get information about available dataset generation options."""
    return jsonify({
        "sample_types": [
            {
                "type": "text_to_bits",
                "description": "Convert text to parity-protected bit sequences",
                "parameters": ["texts", "max_len"]
            },
            {
                "type": "synthetic",
                "description": "Generate synthetic bit patterns",
                "parameters": ["count", "max_len"],
                "patterns": ["alternating", "blocks", "fibonacci", "prime_based", "random_walk"]
            },
            {
                "type": "safety",
                "description": "Generate safety benchmark sequences",
                "parameters": ["count"],
                "categories": ["low_entropy", "medium_entropy", "high_entropy", "edge_cases"]
            },
            {
                "type": "compression",
                "description": "Generate compressed variants of base sequences",
                "parameters": ["count", "compression_ratios"]
            }
        ],
        "default_config": {
            "max_sequence_length": 512,
            "total_samples": 25000,
            "safety_thresholds": {
                "min_negentropy": 0.1,
                "max_lz_complexity": 0.9,
                "min_symbiosis": 0.3
            }
        }
    })


@app.route("/health")
def health_check():
    return jsonify({"status": "ok"})


def run_mcp_server(host: str = "0.0.0.0", port: int = 7000) -> None:
    app.run(host=host, port=port, debug=True)


if __name__ == "__main__":
    import torch
    run_mcp_server()