File size: 6,954 Bytes
36c78b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
#!/usr/bin/env python3
"""
Test the trained BitTransformerLM model and validate all features.
"""

import torch
import numpy as np
import logging
from enhanced_checkpoint_system import create_checkpoint_manager
from bit_transformer.model import BitTransformerLM
from bit_transformer.compression import compress_bits_batch, model_output_decompress

logger = logging.getLogger(__name__)

def test_trained_model():
    """Test the most recent trained model."""
    
    print("πŸ§ͺ Testing trained BitTransformerLM model...")
    
    # Load checkpoint manager
    manager = create_checkpoint_manager()
    
    # Find the most recent session
    sessions = list(manager.sessions_dir.iterdir())
    if not sessions:
        print("❌ No training sessions found")
        return
    
    latest_session = max(sessions, key=lambda x: x.stat().st_mtime)
    session_id = latest_session.name
    
    print(f"πŸ“ Loading from session: {session_id}")
    
    # Initialize model with same config
    model = BitTransformerLM(
        d_model=256,
        nhead=8,
        num_layers=4,
        dim_feedforward=512,
        max_seq_len=128,
        use_checkpoint=True,
        chunk_size=None
    )
    
    # Load checkpoint
    try:
        checkpoint_data = manager.load_checkpoint(session_id, model=model)
        print(f"βœ… Model loaded from: {checkpoint_data['checkpoint_path']}")
        
        metrics = checkpoint_data['model_data']['metrics']
        print(f"πŸ“Š Training metrics - Loss: {metrics['loss']:.4f}, "
              f"K: {metrics['K_negentropy']:.3f}, "
              f"C: {metrics['C_complexity']:.3f}, "
              f"S: {metrics['S_symbiosis']:.3f}")
        
    except Exception as e:
        print(f"❌ Failed to load checkpoint: {e}")
        return
    
    # Test inference
    model.eval()
    with torch.no_grad():
        print("\nπŸ”¬ Testing model inference...")
        
        # Test 1: Simple alternating pattern
        test_input1 = torch.tensor([[0, 1, 0, 1, 0, 1, 0, 1]], dtype=torch.long)
        output1 = model(test_input1)
        
        if isinstance(output1, tuple):
            logits1, telemetry1 = output1
            print(f"βœ… Forward pass successful, output shape: {logits1.shape}")
            print(f"πŸ“‘ Telemetry keys: {list(telemetry1.keys())}")
        else:
            logits1 = output1
            print(f"βœ… Forward pass successful, output shape: {logits1.shape}")
        
        # Get predictions
        if logits1.dim() == 3:
            predictions1 = torch.argmax(logits1, dim=-1)
        else:
            predictions1 = torch.argmax(logits1.reshape(1, 8, 2), dim=-1)
        
        print(f"πŸ“₯ Input:  {test_input1.squeeze().tolist()}")
        print(f"πŸ“€ Output: {predictions1.squeeze().tolist()}")
        
        # Test 2: Random pattern
        test_input2 = torch.randint(0, 2, (1, 16), dtype=torch.long)
        output2 = model(test_input2)
        
        if isinstance(output2, tuple):
            logits2, telemetry2 = output2
        else:
            logits2 = output2
            
        predictions2 = torch.argmax(logits2.reshape(1, 16, 2), dim=-1)
        print(f"\nπŸ“₯ Random input:  {test_input2.squeeze().tolist()}")
        print(f"πŸ“€ Model output:  {predictions2.squeeze().tolist()}")
        
        # Test 3: Compression/Decompression
        print("\nπŸ—œοΈ Testing compression features...")
        
        # Create a longer sequence for compression testing
        long_sequence = torch.randint(0, 2, (1, 64), dtype=torch.long)
        
        # Test compression
        compressed = compress_bits_batch(long_sequence)
        print(f"Original length: {long_sequence.shape[-1]}")
        print(f"Compressed length: {len(compressed[0])}")
        print(f"Compression ratio: {len(compressed[0]) / long_sequence.shape[-1]:.2f}")
        
        # Test decompression
        decompressed = model_output_decompress(compressed)
        compression_success = torch.equal(long_sequence, decompressed)
        print(f"βœ… Compression/decompression successful: {compression_success}")
        
        # Test 4: Safety metrics computation
        print("\nπŸ›‘οΈ Testing safety metrics...")
        
        def compute_safety_metrics(predictions, targets):
            pred_bits = predictions.float().flatten()
            target_bits = targets.float().flatten()
            
            # K metric (Negentropy)
            prob_1 = pred_bits.mean().item()
            prob_0 = 1 - prob_1
            if prob_0 > 0 and prob_1 > 0:
                entropy = -prob_0 * np.log2(prob_0) - prob_1 * np.log2(prob_1)
                negentropy = 1.0 - entropy
            else:
                negentropy = 1.0
            
            # C metric (Complexity)
            changes = (pred_bits[1:] != pred_bits[:-1]).sum().item()
            complexity = changes / len(pred_bits) if len(pred_bits) > 1 else 0.0
            
            # S metric (Symbiosis)
            target_mean = target_bits.mean()
            pred_mean = pred_bits.mean()
            symbiosis = 1.0 - abs(target_mean - pred_mean).item()
            
            return {
                'K_negentropy': negentropy,
                'C_complexity': complexity,
                'S_symbiosis': symbiosis
            }
        
        # Test on several patterns
        test_patterns = [
            [0, 1, 0, 1, 0, 1, 0, 1],  # Alternating
            [1, 1, 1, 1, 0, 0, 0, 0],  # Block pattern
            [0, 1, 1, 0, 1, 0, 1, 1],  # Mixed
        ]
        
        for i, pattern in enumerate(test_patterns):
            test_seq = torch.tensor([pattern], dtype=torch.long)
            model_out = model(test_seq)
            if isinstance(model_out, tuple):
                model_logits, _ = model_out
            else:
                model_logits = model_out
                
            model_preds = torch.argmax(model_logits.reshape(1, len(pattern), 2), dim=-1)
            metrics = compute_safety_metrics(model_preds, test_seq)
            
            print(f"Pattern {i+1}: K={metrics['K_negentropy']:.3f}, "
                  f"C={metrics['C_complexity']:.3f}, "
                  f"S={metrics['S_symbiosis']:.3f}")
    
    # Storage usage report
    print(f"\nπŸ’Ύ Storage usage report:")
    usage = manager.get_storage_usage()
    print(f"Total storage used: {usage['total_gb']:.3f} GB")
    print(f"Training sessions: {usage['num_sessions']}")
    print(f"Best models saved: {usage['num_best_models']}")
    
    for session in usage['sessions'][:3]:  # Top 3 sessions by size
        print(f"  - {session['session_id']}: {session['size_gb']:.3f} GB "
              f"({session['num_checkpoints']} checkpoints)")
    
    print("\nπŸŽ‰ Model testing completed successfully!")
    return True

if __name__ == "__main__":
    success = test_trained_model()
    if success:
        print("βœ… ALL TESTS PASSED!")
    else:
        print("❌ Some tests failed")