File size: 22,225 Bytes
36c78b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

# BitTransformerLM Deep-Dive Assessment Report

*(Comprehensive technical review and optimization roadmap)*

---

## Completed Tasks
- [x] 3.1 Cosine noise schedule option
- [x] 3.2 Post-process parity correction
- [x] 2.3 Expose checkpoint & reversible toggles
- [x] 2.2 Update deprecated AMP call
- [x] 5.2 Metric-drift alerts
- [x] 1.3 Expand README / docstrings for telemetry & ACT
- [x] 3.3 Safety-gate soft-retry
- [x] 7.1 Add ACT halting unit test
- [x] 4.1 Integrate performance-based scaling
- [x] 4.2 Learning-rate decay on resize
- [x] 3.4 Chunked attention logging toggle
- [x] 3.5 Quantization-aware training toggle
- [x] 7.2 Quantization & QAT tests
- [x] 4.3 Dashboard flag wiring
- [x] 7.3 Dashboard smoke test
- [x] 2.1 Unify flag names & deprecate legacy scale script
- [x] 5.1 Telemetry λ and floor UI
- [x] 5.3 Cluster-based distillation data
- [x] 6.1 Allow width scaling in collapse loop
- [x] 6.2 Save distilled metrics summary

## 1. Overview of BitTransformerLM Architecture and Recent Additions  
BitTransformerLM is a **reversible Transformer** that operates **directly on binary sequences (bits)**.  The immutable core uses multi-head self-attention on bit embeddings with sinusoidal positional encoding and already supports:

* Safety-centric telemetry (negentropy *K*, LZ complexity *C*, symbiosis *S*)
* Run-length compression / decompression paths
* Progressive scaling (depth & width) with reversible layers + gradient checkpointing
* Quantization (dynamic INT8 + optional 4‑bit QAT)
* A non‑causal **Diffusion‑LM mode** for bidirectional, denoising generation
* Dashboard, MCP server, and FSDP/pipeline hooks for distributed or edge deployment

Recent commits locked in deterministic environment setup (ChatGPT Codex container), removed insecure `/exec` endpoints, and added a reliable *course‑to‑fine* diffusion sampler stub.  The model now installs and trains reproducibly on CPU‑only hosts, yet scales to multi‑GPU with FSDP.

---

## 2. Consistent Naming & Documentation
* Codebase generally follows *snake_case* functions / *CamelCase* classes, but CLI flags & helper scripts drift (e.g. `--diffusion` vs internal `causal=False`).  
  **Action:** unify flag names & docstrings; deprecate redundant scripts (`progressive_scaleup.py` vs `integration_schedule.py`).
* README and inline docs lack quick intuition for *K, C, S* metrics, ACT, and reversible internals.  
  **Action:** add short metric primers and ACT demo snippets; update `AGENTS.md` quick‑start table.

---

## 3. Optimizing Module Interactions & Performance
| Area | Current State | Optimization | Outcome |
|------|---------------|--------------|---------|
| **Chunked attention** ✅ | Saves RAM but reconstructs full *T×T* matrix for telemetry | Skip full matrix when `chunk_size < seq_len` and user disables `full_attn_logging` | Same metrics, big memory + speed win on long sequences |
| **PyTorch 2 features** | Uses `torch.compile` & BF16 autocast inconsistently | Standardize `torch.amp.autocast(device_type="cpu", dtype=torch.bfloat16)`; wrap long loops | 10‑20 % CPU speed‑up, no deprecation warnings |
| **Reversible + checkpoint** | Always checkpoints → slower when RAM ample | Expose `--no-checkpoint` flag; document trade‑offs | User‑selectable speed vs memory |
| **Quantization** ✅ | INT8 dynamic works; 4‑bit QAT unused | Add `--qat` toggle in training scripts & unit‑test tiny model | Edge‑ready 4‑bit weights validated |
| **Compression loops** | Python for‑loops per sample | Batch or vectorized RLE when batch≫8 | Marginal speed‑up for large batches |

---

## 4. Fully Leveraging Diffusion Mode
1. [x] **Noise schedule** – switchable linear ▸ cosine ▸ exponential; expose `--noise-schedule`.
2. [x] **Step count** – allow 8–16 steps for high‑fidelity generation; document compute trade‑off.
3. [x] **Parity safeguard** – post‑sampling parity‑bit fix or strict parity sampling to guarantee valid bytes.
4. [x] **Training curriculum** – optional schedule: high‑noise → low‑noise over epochs; keep random‑noise fallback.
5. [x] **Safety integration** – run `hil_safe_inference(strict=False)` during diffusion; warn (not crash) on metric floor breaches.

---

## 5. Enhanced Training Workflow & Scaling Strategy
* **Adaptive scaling trigger** – adopt `progressive_scaleup.py` logic: scale only when val‑loss Δ < threshold; alternate width↔context↔depth.  
* **Context extension** – use `double_length()` when plateau met; maintain chunked attention windows.  
* **Warm‑up & plateau** – keep 5‑batch freeze after each expansion; add default final plateau epoch.  
* **LR hygiene** – slight LR decay each scale‑up; document rationale.

---

## 6. Telemetry Metrics & Safety Integration
* **Metric coefficients** (`λ_K`, `λ_C`, `λ_S`) exposed via dashboard slider; floors (C ≥ 0.3, S ≥ 0.5) adjustable per deployment.  
* **TelemetrySynthesizer** – cluster activations → representative sequences for distillation & drift detection.  
* **Metric drift alert** – integrate `detect_metric_drift()` into training monitor; log if Δ > 0.2.

---

## 7. Distillation & Model Collapse Optimization
1. Use **cluster‑selected sequences** as `cluster_data` for `collapse_submodel` → better coverage.  
2. Permit optional width growth (`width_scale > 1`) in iterative collapse rounds.  
3. Log final vs floor metrics in `distilled_metrics.json` for audit trail.  
4. Optionally auto‑invoke collapse at end of `integration_schedule` with `--auto-collapse`.

---

## 8. Additional Testing & Release Readiness
* Expand pytest suite: diffusion training/sampling, ACT halting, INT8 + QAT inference, dashboard API smoke tests.  
* Add multi‑GPU CI job to validate FSDP + reversible layers.  
* Strengthen debug logs: print mode (causal/diffusion/compression), scale‑up events, safety‑gate warnings.

---

## 9. Strategic Summary
BitTransformerLM already delivers an **orthogonal bundle of “firsts”**: bit‑native granularity, reversible memory efficiency, metric‑driven safety, and turnkey text diffusion.  
Executing the roadmap **knits every module into a smooth, reproducible pipeline** without touching core architecture—preserving alignment while boosting usability.

**Bottom‑line:** With these refinements, BitTransformerLM becomes the reference for transparent, resource‑efficient, safety‑gated language modelling at the bit level—well beyond “just another model.”


Below is an **implementation playbook** that turns every recommendation in *“Overview of BitTransformerLM Architecture and Recent Additions”* into clear tasks and ready‑to‑copy Codex prompts.  Where page numbers add context, I note them; all content is from the uploaded PDF.&#x20;

---

## 1 · Repository Consistency & Documentation

| #   | Task                                                           | Key Steps                                                                                                                                                 | Codex Prompt (trim or expand as desired)                                                                                                                                                                                                                                 |
| --- | -------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| 1.1 | **Audit & unify public API names**                             | • Scan for duplicate / mis‑matched flags (e.g. `--diffusion` vs `causal=False`).<br>• Rename or deprecate aliases; update docs.                           | “List every function, class, and CLI flag whose name does **not** match the style‑guide (snake\_case for funcs, CamelCase for classes) in the BitTransformerLM repo. For each, propose a single canonical name and generate the automated `git mv` or refactor patches.” |
| 1.2 | **Consolidate scaling scripts**                                | • Merge `progressive_scaleup.py` logic into `integration_schedule.py`.<br>• Mark redundant script as example.                                             | “Move the performance‑based scaling criterion from `progressive_scaleup.py` into `integration_schedule.py`. Preserve existing kwargs, add `--improve‑thresh` with default 0.01. Provide diff.”                                                                           |
| 1.3 | **Expand README / docstrings for telemetry & ACT** (pp. 1 ‑ 2) | • Add one‑paragraph explanations of Negentropy (K), LZ Complexity (C), Symbiosis (S), and ACT halting to README.<br>• Link to equations in code comments. | “Insert a new subsection *‘Telemetry Metrics Explained’* into README after the quick‑start block, then add in‑line docstrings for `negentropy_score`, `lz_complexity`, and `symbiosis_score` explaining ranges and typical values.”                                      |

---

## 2 · Performance Optimizations

| #   | Task                                              | Key Steps                                                                                                                    | Codex Prompt                                                                                                                                                                                                     |
| --- | ------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| 2.1 | **Vectorize chunked‑attention telemetry** (p. 2)  | • Add flag `--attn‑summary`.<br>• When enabled and `chunked_attn=True`, compute per‑chunk entropy and skip full `T × T` map. | “Refactor `_chunked_attn` in `model.py` so that, if `attn_summary` is true, it returns `(attn_entropy_per_chunk, None)` instead of the stitched full map. Fall back to old behaviour otherwise. Update callers.” |
| 2.2 | **Update deprecated AMP call**                    | Replace `torch.cpu.amp.autocast` with `torch.amp.autocast(device_type="cpu", dtype=torch.bfloat16)` everywhere.              | “Search repo for `torch.cpu.amp.autocast`, replace with the new API, and add a context‑manager wrapper `cpu_autocast` in `utils/torch_utils.py`.”                                                                |
| 2.3 | **Expose checkpoint & reversible toggles** (p. 2) | • Add CLI flags `--use-checkpoint / --no-checkpoint` and `--reversible`.<br>• Document memory/compute trade‑off.             | “Modify `train.py` argparse to include mutually exclusive `--[no-]checkpoint` flags; wire to `use_checkpoint` in model init.”                                                                                    |
| 2.4 | **Batch run‑length encoding** (p. 3)              | • Implement NumPy‑vectorised RLE for the full tensor.<br>• Fallback to Python loop if tensor < 1024 bits.                    | “Implement `batch_rle_encode` in `bit_io.py` using NumPy strides; write unit test comparing speed & correctness to existing per‑sequence encode.”                                                                |

---

## 3 · Diffusion‑Mode Enhancements

| #   | Task                                      | Key Steps                                                                                                                       | Codex Prompt                                                                                                       |                                                                  |                                                                                                                          |
| --- | ----------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------ |
| 3.1 | **Cosine noise schedule option** (p. 4)   | • Add \`schedule="linear                                                                                                        | cosine                                                                                                             | exp"`arg to`diffusion\_inference\`.<br>• Default remains linear. | “Extend `diffusion_inference` to support a cosine decay of `mask_prob` over `steps`. Provide math and update docstring.” |
| 3.2 | **Post‑process parity correction** (p. 4) | • After sampling, flip each parity bit if byte parity invalid.<br>• Log number of corrections.                                  | “Write `enforce_parity(bits)` that patches 9th bit per byte to satisfy even‑parity, return corrected seq + stats.” |                                                                  |                                                                                                                          |
| 3.3 | **Safety‑gate soft‑retry**                | • On failed `hil_safe_inference(strict=True)`, auto‑retry up to 3× with diffusion or random seed.<br>• Surface warning in logs. | “Wrap `hil_safe_inference` in a helper `safe_sample_with_retry`; implement exponential back‑off and logging.”      |                                                                  |                                                                                                                          |

---

## 4 · Adaptive Training Workflow

| #   | Task                                              | Key Steps                                                                                                                                   | Codex Prompt                                                                                                                                                                                                    |
| --- | ------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| 4.1 | **Integrate performance‑based scaling** (pp. 5‑6) | • Use `Δval_loss < thresh` as condition to trigger `add_layer()`/`double_width()`.<br>• Alternate occasional `double_length()` for context. | “Inside `integration_schedule.train_loop`, compute rolling val‑loss; if mean improvement < `args.improve_thresh`, call `model.scale_up(strategy=next_step)` where `next_step` cycles \[layer, width, context].” |
| 4.2 | **Learning‑rate decay on resize**                 | • After each scale‑up, reduce base LR by √2.<br>• Provide warm‑up of 100 steps.                                                             | “Add `adjust_learning_rate(optimizer, factor)` util; call it after every successful model expansion.”                                                                                                           |
| 4.3 | **Dashboard flag wiring**                         | • Map UI toggles (compression, diffusion) to `compress_prob`, `diffusion` args in backend.                                                  | “In `dashboard_app.py`, when user toggles compression, pass `compress_prob=1.0` to `ModelManager.train()`.”                                                                                                     |

---

## 5 · Telemetry & Safety

| #   | Task                                                     | Key Steps                                                                                                             | Codex Prompt                                                                                                                                                  |
| --- | -------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| 5.1 | **Expose λ coefficients and safety floors in UI** (p. 7) | • Add sliders for `λ_K`, `λ_C`, `λ_S`, `C_floor`, `S_floor`.<br>• Persist to model state.                             | “Add REST endpoints `/config/telemetry` (GET/POST) that read or set lambda values and floors; bind to dashboard sliders.”                                     |
| 5.2 | **Metric‑drift alerts** (p. 8)                           | • After every epoch, call `detect_metric_drift(history, window=100)`; if > 0.2 drift, log & optionally halt training. | “Integrate `detect_metric_drift` into `ModelManager._log_metrics`; raise `MetricDriftWarning` when threshold exceeded.”                                       |
| 5.3 | **Cluster‑based distillation data** (pp. 8‑9)            | • Use `TelemetrySynthesizer` to pick `k` cluster representatives (default 8).<br>• Feed to `collapse_submodel`.       | “Before `collapse_submodel`, run `representatives = TelemetrySynthesizer(model).cluster(train_data, k=8)`. Replace `train_bits[:64]` with `representatives`.” |

---

## 6 · Distillation / Collapse Process

| #   | Task                                            | Key Steps                                                                                        | Codex Prompt                                                                                                        |
| --- | ----------------------------------------------- | ------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------- |
| 6.1 | **Allow width scaling in collapse loop** (p. 8) | • Add `width_scale` param; if metric floors unmet after deepening, double width once then retry. | “Modify `collapse_submodel`: on round‑2 failure, rebuild sub‑model with `hidden_dim *= width_scale` (default 1.5).” |
| 6.2 | **Save metrics summary**                        | • Extend `save_distilled_model` to write `metrics.json` with achieved vs floor values.           | “Update `save_distilled_model` to dump `{‘C’:score_C, ‘S’:score_S, ‘floors’:{...}}` alongside weights.”             |

---

## 7 · Testing & CI Hardening

| #   | Task                                  | Key Steps                                                                            | Codex Prompt                                                                                                    |
| --- | ------------------------------------- | ------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------- |
| 7.1 | **Add ACT halting unit test** (p. 10) | • Craft toy seq; assert `sum(halt_prob<1) < n_layers`.                               | “Write `tests/test_act.py` ensuring at least one layer halts early when `use_act=True, threshold=0.1`.”         |
| 7.2 | **Quantization & QAT tests**          | • After tiny train, run dynamic int8 + fake‑QAT path, assert same logits ±1e‑3.      | “Add `pytest` case: train 2‑layer model 1 epoch, call `quantize_dynamic`, compare outputs on 10 random inputs.” |
| 7.3 | **Dashboard smoke test**              | • In CI, launch Flask app with `pytest‑flask`, hit `/init`, `/train‑step`, `/infer`. | “Create `tests/test_dashboard.py` that starts server in a thread and exercises core endpoints.”                 |

---

## 8 · Packaging & Release

| #   | Task                                     | Key Steps                                                                     | Codex Prompt                                                                                                      |
| --- | ---------------------------------------- | ----------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------- |
| 8.1 | **Rename repository references** (p. 11) | • Replace `Test/` URL stubs with new repo slug.<br>• Update badges in README. | “Search‑replace all GitHub links from `WCNegentropy/Test` to `WCNegentropy/BitTransformerLM`; update badge SVGs.” |
| 8.2 | **PyPI build verification**              | • Ensure `pyproject.toml` installs cleanly on 3.10 & 3.11 in CI.              | “Add GitHub Action matrix for {macOS, ubuntu‑latest} × {3.10, 3.11}; run `pip install -e . && pytest`.”           |

---

### How to Use These Prompts

**Run** unit tests; iterate if failures surface.

This checklist should bring BitTransformerLM to a polished, v1‑ready state while aligning with your NRB‑driven safety and telemetry philosophy.&#x20;