File size: 18,398 Bytes
2f39acc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
#!/usr/bin/env python3
"""
CPU-Optimized Edge Deployment BitTransformerLM Training
Optimized for consumer devices and edge applications.
"""
import os
import time
import torch
import torch.nn.functional as F
from datasets import load_dataset
from bit_transformer import (
BitTransformerLM,
text_to_bits,
bits_to_text,
train_loop,
configure_optimizer,
save_model,
load_model,
set_dropout,
hil_safe_inference,
quantize_dynamic,
)
from bit_transformer.torch_utils import cpu_autocast
from bit_transformer.training import train_loop
def create_optimal_cpu_model():
"""Create BitTransformerLM optimized for CPU edge deployment."""
print("π§ Creating CPU-optimized BitTransformerLM...")
# Optimal configuration for edge devices:
# - Small model size for low memory footprint
# - CPU autocast for faster FP16 inference
# - No reversible layers (simpler for CPU)
# - Gradient checkpointing disabled for speed
# - Small context length for efficiency
model = BitTransformerLM(
d_model=64, # Small embedding dimension (vs 128 default)
nhead=4, # Fewer attention heads (vs 8 default)
num_layers=3, # Shallow model (vs 4 default)
dim_feedforward=128, # Smaller FFN (vs 512 default)
max_seq_len=256, # Shorter context (vs 1024 default)
reversible=False, # Disable reversible layers (CPU doesn't benefit much)
use_checkpoint=False, # Disable gradient checkpointing (prioritize speed)
use_autocast=True, # Enable CPU autocast for BF16 mixed precision
use_act=False, # Disable ACT for simplicity
chunk_size=32, # Small chunks for memory efficiency
full_attn_logging=False, # Disable attention logging to save memory
lambda_K=1.0, # Standard telemetry weights
lambda_C=1.0,
lambda_S=1.0,
)
# Calculate model parameters
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f" π Model Configuration:")
print(f" d_model: {64}")
print(f" num_layers: {3}")
print(f" nhead: {4}")
print(f" dim_feedforward: {128}")
print(f" max_seq_len: {256}")
print(f" Total parameters: {total_params:,}")
print(f" Trainable parameters: {trainable_params:,}")
print(f" Estimated size: {total_params * 4 / 1024 / 1024:.1f}MB (FP32)")
print(f" With autocast: ~{total_params * 2 / 1024 / 1024:.1f}MB (BF16)")
return model
def load_training_dataset(dataset_size=512, max_len=128):
"""Load and prepare training dataset optimized for edge training."""
print("π Loading training dataset...")
try:
# Try to load BitTransformerLM dataset from HuggingFace
print(" Attempting to load BitTransformerLM dataset...")
dataset = load_dataset("WCNegentropy/BitTransformerLM", split="train[:{}]".format(dataset_size))
if dataset and len(dataset) > 0:
train_texts = [item['text'] for item in dataset if item.get('text')]
if len(train_texts) > 0:
print(f" β
Loaded {len(train_texts)} samples from BitTransformerLM dataset")
else:
raise Exception("No text samples found in dataset")
else:
raise Exception("Dataset empty or not accessible")
except Exception as e:
print(f" β οΈ BitTransformerLM dataset not available: {e}")
print(" π Falling back to WikiText-2...")
try:
# Fallback to WikiText-2 for training
ds = load_dataset("wikitext", "wikitext-2-raw-v1")
train_texts = [text for text in ds["train"]["text"] if text.strip()][:dataset_size]
print(f" β
Loaded {len(train_texts)} samples from WikiText-2")
except Exception as e2:
print(f" β Failed to load WikiText-2: {e2}")
print(" π² Using synthetic text data...")
# Generate simple synthetic text for demonstration
synthetic_texts = [
"The quick brown fox jumps over the lazy dog.",
"Machine learning is transforming technology.",
"Edge computing enables local AI processing.",
"BitTransformerLM uses bit-native processing.",
"CPU optimization improves inference speed.",
"Neural networks learn from training data.",
"Transformers use attention mechanisms.",
"Language models understand text patterns.",
]
train_texts = (synthetic_texts * (dataset_size // len(synthetic_texts) + 1))[:dataset_size]
print(f" β
Generated {len(train_texts)} synthetic samples")
# Convert text to bits
print(" π Converting text to bits...")
train_sequences = []
valid_sequences = []
for i, text in enumerate(train_texts):
try:
bits = text_to_bits(text)[:max_len]
if len(bits) < max_len:
bits.extend([0] * (max_len - len(bits))) # Pad to max_len
# Use 80/20 split for train/validation
if i < len(train_texts) * 0.8:
train_sequences.append(bits)
else:
valid_sequences.append(bits)
except Exception as e:
print(f" β οΈ Failed to convert text to bits: {e}")
continue
train_tensor = torch.tensor(train_sequences, dtype=torch.long)
valid_tensor = torch.tensor(valid_sequences, dtype=torch.long) if valid_sequences else train_tensor[:16]
print(f" π Dataset Statistics:")
print(f" Training sequences: {len(train_sequences)}")
print(f" Validation sequences: {len(valid_sequences)}")
print(f" Sequence length: {max_len}")
print(f" Training tensor shape: {train_tensor.shape}")
return train_tensor, valid_tensor, train_texts[:len(train_sequences)]
def train_cpu_optimized_model(model, train_data, valid_data, epochs=5):
"""Train the model with CPU-optimized settings."""
print(f"π Training CPU-optimized BitTransformerLM for {epochs} epochs...")
# Set model to training mode
model.train()
set_dropout(model, 0.1)
# Configure optimizer for edge deployment
# Lower learning rate and smaller batch size for stable CPU training
batch_size = 4 # Small batch size for memory efficiency
learning_rate = 5e-4 # Conservative learning rate
total_steps = max(1, epochs * (len(train_data) // batch_size)) # Ensure at least 1 step
if len(train_data) == 0:
raise ValueError("No training data available - check dataset loading")
optimizer, scheduler = configure_optimizer(
model,
lr=learning_rate,
total_steps=total_steps,
weight_decay=0.01
)
print(f" π Training Configuration:")
print(f" Batch size: {batch_size}")
print(f" Learning rate: {learning_rate}")
print(f" Total steps: {total_steps}")
print(f" CPU autocast: Enabled")
# Training loop with CPU optimizations
train_losses = []
for epoch in range(epochs):
print(f"\n π Epoch {epoch + 1}/{epochs}")
epoch_losses = []
epoch_start_time = time.time()
# Shuffle training data
perm = torch.randperm(len(train_data))
train_data_shuffled = train_data[perm]
# Process in small batches
for batch_idx in range(0, len(train_data_shuffled), batch_size):
batch_end = min(batch_idx + batch_size, len(train_data_shuffled))
batch = train_data_shuffled[batch_idx:batch_end]
if len(batch) == 0:
continue
optimizer.zero_grad()
# Use CPU autocast for mixed precision
with cpu_autocast():
logits, telemetry = model(batch)
# Standard autoregressive loss
pred = logits[:, :-1, :].reshape(-1, 2)
target = batch[:, 1:].reshape(-1)
loss = F.cross_entropy(pred, target)
# Backward pass
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
# Only step scheduler if we haven't exceeded total steps
if scheduler.last_epoch < scheduler.total_steps - 1:
scheduler.step()
batch_loss = loss.item()
epoch_losses.append(batch_loss)
# Log progress every 50 steps
if (batch_idx // batch_size) % 50 == 0:
avg_loss = sum(epoch_losses[-10:]) / min(10, len(epoch_losses))
telemetry_str = f"K={telemetry.get('K', 0):.3f}, C={telemetry.get('C', 0):.3f}, S={telemetry.get('S', 0):.3f}"
print(f" Step {batch_idx // batch_size}: Loss={avg_loss:.4f}, {telemetry_str}")
epoch_time = time.time() - epoch_start_time
avg_epoch_loss = sum(epoch_losses) / len(epoch_losses)
train_losses.append(avg_epoch_loss)
print(f" β±οΈ Epoch {epoch + 1} completed in {epoch_time:.1f}s, Avg Loss: {avg_epoch_loss:.4f}")
# Validation every epoch
if len(valid_data) > 0:
model.eval()
set_dropout(model, 0.0)
with torch.no_grad():
with cpu_autocast():
val_batch = valid_data[:min(8, len(valid_data))] # Small validation batch
val_logits, val_telemetry = model(val_batch)
val_pred = val_logits[:, :-1, :].reshape(-1, 2)
val_target = val_batch[:, 1:].reshape(-1)
val_loss = F.cross_entropy(val_pred, val_target).item()
print(f" π Validation Loss: {val_loss:.4f}")
print(f" π Telemetry - K: {val_telemetry.get('K', 0):.3f}, C: {val_telemetry.get('C', 0):.3f}, S: {val_telemetry.get('S', 0):.3f}")
model.train()
set_dropout(model, 0.1)
print(f"\nβ
Training completed!")
print(f" Final training loss: {train_losses[-1]:.4f}")
return model, train_losses
def test_model_inference(model, test_texts):
"""Test the trained model with inference and safety checks."""
print("\nπ§ͺ Testing Model Inference...")
model.eval()
set_dropout(model, 0.0)
# Test basic inference
test_samples = test_texts[:3] # Test with first 3 samples
for i, text in enumerate(test_samples):
print(f"\n Test {i + 1}: {text[:50]}...")
try:
# Convert to bits
input_bits = text_to_bits(text)[:64] # Shorter for demo
if len(input_bits) < 64:
input_bits.extend([0] * (64 - len(input_bits)))
input_tensor = torch.tensor([input_bits], dtype=torch.long)
# Run inference with CPU autocast
with torch.no_grad():
with cpu_autocast():
logits, telemetry = model(input_tensor)
# Generate next tokens
next_token_logits = logits[0, -1, :]
next_token_probs = F.softmax(next_token_logits, dim=-1)
next_token = torch.multinomial(next_token_probs, 1).item()
print(f" Input bits: {input_bits[:16]}... (showing first 16)")
print(f" Next token prediction: {next_token}")
print(f" Next token confidence: {next_token_probs[next_token]:.3f}")
print(f" Telemetry - K: {telemetry.get('K', 0):.3f}, C: {telemetry.get('C', 0):.3f}, S: {telemetry.get('S', 0):.3f}")
except Exception as e:
print(f" β Inference failed: {e}")
# Test safe inference
print(f"\nπ‘οΈ Testing Safe Inference...")
try:
# Create a simple prompt
test_prompt = "The future of AI is"
prompt_bits = text_to_bits(test_prompt)
prompt_tensor = torch.tensor([prompt_bits], dtype=torch.long)
with cpu_autocast():
safe_result = hil_safe_inference(model, prompt_tensor, max_new_tokens=16)
if safe_result is not None:
print(f" β
Safe inference successful")
print(f" Generated {len(safe_result[0]) - len(prompt_bits)} new tokens")
else:
print(f" β οΈ Safe inference blocked by safety gates")
except Exception as e:
print(f" β Safe inference test failed: {e}")
def benchmark_cpu_performance(model):
"""Benchmark the model's CPU performance."""
print("\nβ‘ CPU Performance Benchmark...")
model.eval()
set_dropout(model, 0.0)
# Prepare test data
batch_sizes = [1, 2, 4]
sequence_lengths = [32, 64, 128]
results = []
for batch_size in batch_sizes:
for seq_len in sequence_lengths:
print(f"\n Testing batch_size={batch_size}, seq_len={seq_len}")
# Create random test data
test_data = torch.randint(0, 2, (batch_size, seq_len), dtype=torch.long)
# Warmup
with torch.no_grad():
with cpu_autocast():
for _ in range(3):
_, _ = model(test_data)
# Benchmark
times = []
for _ in range(10):
start_time = time.time()
with torch.no_grad():
with cpu_autocast():
logits, telemetry = model(test_data)
end_time = time.time()
times.append(end_time - start_time)
avg_time = sum(times) / len(times)
throughput = (batch_size * seq_len) / avg_time
result = {
'batch_size': batch_size,
'seq_len': seq_len,
'avg_time_ms': avg_time * 1000,
'throughput_tokens_per_sec': throughput
}
results.append(result)
print(f" Average time: {avg_time * 1000:.2f}ms")
print(f" Throughput: {throughput:.0f} tokens/sec")
# Summary
print(f"\nπ Performance Summary:")
best_throughput = max(results, key=lambda x: x['throughput_tokens_per_sec'])
print(f" Best throughput: {best_throughput['throughput_tokens_per_sec']:.0f} tokens/sec")
print(f" At batch_size={best_throughput['batch_size']}, seq_len={best_throughput['seq_len']}")
return results
def quantize_for_deployment(model):
"""Apply dynamic quantization for deployment."""
print("\nποΈ Applying Dynamic Quantization for Deployment...")
try:
quantized_model = quantize_dynamic(model)
# Compare model sizes
original_params = sum(p.numel() for p in model.parameters())
quantized_params = sum(p.numel() for p in quantized_model.parameters())
print(f" Original parameters: {original_params:,}")
print(f" Quantized parameters: {quantized_params:,}")
print(f" Model size reduction: ~50% (FP32 -> INT8)")
# Quick inference test
test_input = torch.randint(0, 2, (1, 32), dtype=torch.long)
with torch.no_grad():
original_output = model(test_input)
quantized_output = quantized_model(test_input)
print(f" β
Quantization successful - model still functional")
return quantized_model
except Exception as e:
print(f" β Quantization failed: {e}")
return model
def main():
"""Main training and testing pipeline."""
print("π CPU-Optimized BitTransformerLM Training Pipeline")
print("="*60)
# Step 1: Create optimal CPU model
model = create_optimal_cpu_model()
# Step 2: Load training dataset
train_data, valid_data, train_texts = load_training_dataset(dataset_size=256, max_len=128)
# Step 3: Train the model
trained_model, train_losses = train_cpu_optimized_model(model, train_data, valid_data, epochs=3)
# Step 4: Test inference
test_model_inference(trained_model, train_texts)
# Step 5: Benchmark performance
benchmark_results = benchmark_cpu_performance(trained_model)
# Step 6: Apply quantization
quantized_model = quantize_for_deployment(trained_model)
# Step 7: Save models
print("\nπΎ Saving Models...")
# Create weights directory if it doesn't exist
os.makedirs("weights", exist_ok=True)
try:
save_model(trained_model, "weights/cpu_edge_model.pt.gz")
print(" β
Saved trained model: weights/cpu_edge_model.pt.gz")
save_model(quantized_model, "weights/cpu_edge_model_quantized.pt.gz")
print(" β
Saved quantized model: weights/cpu_edge_model_quantized.pt.gz")
except Exception as e:
print(f" β οΈ Model saving failed: {e}")
# Final summary
print("\n" + "="*60)
print("π CPU-Optimized BitTransformerLM Training Complete!")
print("="*60)
total_params = sum(p.numel() for p in trained_model.parameters())
final_loss = train_losses[-1] if train_losses else "N/A"
best_throughput = max(benchmark_results, key=lambda x: x['throughput_tokens_per_sec'])
print(f"π Final Results:")
print(f" Model Parameters: {total_params:,}")
print(f" Final Training Loss: {final_loss}")
print(f" Peak Throughput: {best_throughput['throughput_tokens_per_sec']:.0f} tokens/sec")
print(f" Model Size (quantized): ~{total_params * 1 / 1024 / 1024:.1f}MB")
print(f" CPU Optimizations: BF16 autocast, no gradient checkpointing, small chunks")
print(f" Edge Ready: β
Optimized for consumer CPUs")
if __name__ == "__main__":
main() |