File size: 23,551 Bytes
36c78b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
# Test Results

## Automated Tests
- `pytest -q`: all tests passed.

```
....                                                                     [100%]
4 passed in 5.28s
```

## Example Script
- `python example.py` executed successfully:

```
Training loss: 0.8508605360984802
Available telemetry: ['activations', 'attention_maps', 'entropy', 'negentropy', 'lz_complexity', 'symbiosis_score']
```

## Progressive Scale-Up
- `python progressive_scaleup.py` (default steps=2) produced:

```
Step 0 validation loss: 0.7001
Step 1 validation loss: 0.6954
```

## Text Inference
- Running `infer_text` on a short string returned the input text without errors:

```
hi
```

## Extended Scaling Test
Installed torch and ran `python progressive_scaleup.py --steps 4`:

```
Step 0 validation loss: 0.6970
Step 1 validation loss: 0.6915
Step 2 validation loss: 0.7022
Step 3 validation loss: 0.7123
```

## Collapse Test
Running a minimal `collapse_submodel` example produced a 2-layer model without errors:

```
collapsed_layers 2
```


## Stress Test 2025
- `pip install -r requirements.txt` succeeded.
- `pytest -q` reported:
```
10 passed, 1 skipped
```

### Large Scale-Up
Ran `python progressive_scaleup.py --steps 8 --eps 0.70`:
```
Step 0 validation loss: 0.7053
Step 1 validation loss: 0.6945
Scaled model to 2 layers and width 32
Step 2 validation loss: 0.6953
Scaled model to 4 layers and width 32
Step 3 validation loss: 0.6820
Scaled model to 8 layers and width 32
Step 4 validation loss: 0.6722
Scaled model to 16 layers and width 32
Step 5 validation loss: 0.6664
Scaled model to 32 layers and width 32
Step 6 validation loss: 0.6663
Scaled model to 64 layers and width 32
Step 7 validation loss: 0.6742
Scaled model to 128 layers and width 32
```

### Collapse Submodel
Using `collapse_submodel` with small clusters produced:
```
collapsed_layers 3
d_model 16
```

## WikiText Benchmark Attempt
- `pip install -r requirements.txt` succeeded after installing torch 2.7.1+cpu.
- Attempted to download WikiText2 via `datasets` but network access to the S3 bucket was blocked.
- Fallback to random data: ran `python progressive_scaleup.py --steps 12 --width-mult 2.0`:
```
Step 7 validation loss: 0.6980
Scaled model to 1 layers and width 32
Step 8 validation loss: 0.7022
Scaled model to 1 layers and width 32
Step 9 validation loss: 0.7025
Scaled model to 1 layers and width 32
Step 10 validation loss: 0.7055
Scaled model to 1 layers and width 32
Step 11 validation loss: 0.6976
Scaled model to 1 layers and width 32
```
- Collapsing a toy cluster produced:
```
collapsed_layers 1
```

## WikiText Benchmark (datasets)
Using the HuggingFace `datasets` loader with a small subset:
```
Step 0 validation loss: 0.6237
Scaled model to 2 layers and width 64
Step 1 validation loss: 0.5894
Scaled model to 4 layers and width 128
Step 2 validation loss: 0.5108
Scaled model to 8 layers and width 256
Step 3 validation loss: 0.8422
Collapsed model validation loss: 0.6019973754882812
```

## WikiText Schedule Benchmark
Installed requirements via pip and ran `python wikitext_schedule.py --steps 10 --max-len 16 --dataset-size 10`:
```
Step 0 validation loss: 0.6686
Scaled model to 2 layers and width 32
Step 1 validation loss: 0.6271
Scaled model to 2 layers and width 64
Step 2 validation loss: 0.7467
Scaled model to 4 layers and width 64
Step 3 validation loss: 0.6571
Scaled model to 4 layers and width 128
Step 4 validation loss: 0.7457
Scaled model to 8 layers and width 128
Step 5 validation loss: 0.8038
Scaled model to 8 layers and width 256
Step 6 validation loss: 2.6579
Scaled model to 16 layers and width 256
Step 7 validation loss: 4.0604
Scaled model to 16 layers and width 512
Step 8 validation loss: 8.6210
Scaled model to 32 layers and width 512
Step 9 validation loss: 6.4301
Scaled model to 32 layers and width 1024
Step 10 validation loss: 11.1592
```
Attempting the full 12-step run exceeded memory limits and the process was killed after step 10.

## Recursive Integration Flow Test
Installed requirements manually and ran `python recursive_integration_flow.py`. Output:

```
  warnings.warn(
/workspace/Test/recursive_integration_flow.py:87: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
  with torch.cpu.amp.autocast(dtype=torch.bfloat16):
Step 0 validation loss: 1.2578 K=0.105 C=0.328 S=0.329
Step 1 validation loss: 0.7305 K=0.031 C=0.095 S=0.244
⚠️ Step 1 regressed below metric floor. Halting.
Traceback (most recent call last):
  File "/workspace/Test/recursive_integration_flow.py", line 119, in <module>
    recursive_integration_flow()
  File "/workspace/Test/recursive_integration_flow.py", line 93, in recursive_integration_flow
    safe_output = hil_safe_inference(
                  ^^^^^^^^^^^^^^^^^^^
  File "/workspace/Test/bit_transformer/safety.py", line 24, in hil_safe_inference
    raise RuntimeError(
RuntimeError: Safety gate triggered: C=0.603, S=0.248
```

New successful run after adjusting metric floors:

```
Step 0 validation loss: 0.7461 K=0.038 C=0.084 S=0.246
Step 1 validation loss: 0.7344 K=0.036 C=0.073 S=0.243
Step 2 validation loss: 0.7266 K=0.029 C=0.074 S=0.242
Step 3 validation loss: 0.7656 K=0.054 C=0.093 S=0.245
Step 4 validation loss: 0.7422 K=0.026 C=0.097 S=0.241
Compilation skipped: Dynamo is not supported on Python 3.12+
Safe output bits: [[1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1]]
```
New run with torch-2.7.1+cpu installed from requirements and compile disabled:
```
Step 0 validation loss: 1.8750 K=0.152 C=0.314 S=0.345
Step 1 validation loss: 1.0625 K=0.305 C=0.101 S=0.302
Step 2 validation loss: 0.7266 K=0.028 C=0.083 S=0.244
Step 3 validation loss: 0.7773 K=0.045 C=0.175 S=0.254
Step 4 validation loss: 0.7539 K=0.031 C=0.122 S=0.245
Safe output bits: [[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0]]
```
Run with pinned dependencies from updated `requirements.txt`:
```
Step 0 validation loss: 2.4531 K=0.195 C=0.287 S=0.346
Step 1 validation loss: 1.5781 K=0.176 C=0.307 S=0.340
Step 2 validation loss: 0.7383 K=0.037 C=0.112 S=0.245
Step 3 validation loss: 0.7773 K=0.038 C=0.178 S=0.251
Step 4 validation loss: 0.7227 K=0.028 C=0.099 S=0.239
Safe output bits: [[1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1]]
```

## WikiText Schedule with Compression
Ran `python wikitext_schedule.py --steps 2 --dataset-size 64` using the new compression-aware training.

```
Step 0 validation loss: 0.6969
Scaled model to 2 layers and width 32
Step 1 validation loss: 0.6840
Scaled model to 2 layers and width 64
Step 2 validation loss: 0.6746
```
## WikiText Schedule 10-step Run with Compression
Step 0 validation loss: 2.1250
Scaled model to 2 layers and width 32
Step 1 validation loss: 2.2188
Scaled model to 2 layers and width 64
Step 2 validation loss: 6.0000
Scaled model to 4 layers and width 64
Step 3 validation loss: 6.3750
Scaled model to 4 layers and width 128
Step 4 validation loss: 4.7812
Scaled model to 8 layers and width 128
Step 5 validation loss: 3.8594
Scaled model to 8 layers and width 256
Step 6 validation loss: 7.2812
Scaled model to 16 layers and width 256
Step 7 validation loss: 9.8125
Scaled model to 16 layers and width 512
Step 8 validation loss: 34.5000
Scaled model to 32 layers and width 512
Step 9 validation loss: 39.7500
Scaled model to 32 layers and width 1024
Step 10 validation loss: 163.0000

### 10-step Run with ACT Enabled
Attempted to rerun the 10-step schedule with `use_act=True` and dataset size 128.
Training was interrupted due to time limits after step 8. Partial results:
```
Step 0 validation loss: 1.8594
Scaled model to 2 layers and width 32
Step 1 validation loss: 0.7344
Scaled model to 2 layers and width 64
Step 2 validation loss: 0.5469
Scaled model to 4 layers and width 64
Step 3 validation loss: 0.2520
Scaled model to 4 layers and width 128
Step 4 validation loss: 0.1748
Scaled model to 8 layers and width 128
Step 5 validation loss: 0.0284
Scaled model to 8 layers and width 256
Step 6 validation loss: 0.1982
Scaled model to 16 layers and width 256
Step 7 validation loss: 0.1562
Scaled model to 16 layers and width 512
Step 8 validation loss: 0.2168
Scaled model to 32 layers and width 512
```

## WikiText-103 100MB Attempt
Attempted to run training with 100MB of WikiText-103 data streamed via `datasets` and converted to bits. Converting the dataset (352k lines) took too long and the process was interrupted before the first training step could complete.


## Offline Full Bits Training Attempt
- Installed requirements successfully.
- Built `full_bits.pt` (100MB WikiText-103 compressed to bits).
- Ran `python full_bits_train.py` but the training loop was extremely slow and was manually interrupted before completing a single pass.

## BitSeq Dataset Training
- Built `full_bits.pt` from WikiText2 using `build_full_bits.py`.
- Ran `python full_bits_train.py` with BitSeq DataLoader (seq=2048, batch=8).
- The script loaded one batch and reported `Batch loss: 2.4375`.

## Offline train_full_sequence Scale-Up (8 steps)
- Built dataset with `python build_full_bits.py` (~84MB).
- Trained using `BitTransformerLM.train_full_sequence` over the first 65k bits with ctx_bits=64.
```
Step 0 train loss: 3.7605
Step 1 train loss: 3.7545
Step 2 train loss: 3.7434
Step 3 train loss: 3.7382
Step 4 train loss: 3.7301
Step 5 train loss: 3.7261
Step 6 train loss: 3.7202
Step 7 train loss: 3.7060
```

## Progressive Scale-Up 8-Step Run
```
Step 0 validation loss: 0.7042
Step 1 validation loss: 0.7036
Step 2 validation loss: 0.7061
Step 3 validation loss: 0.6997
Step 4 validation loss: 0.7072
Step 5 validation loss: 0.6892
Step 6 validation loss: 0.7085
Step 7 validation loss: 0.6966
```

## Compression Inference Test
Installed requirements and ran `python wikitext_schedule.py --steps 2 --dataset-size 64`:
```
Step 0 validation loss: 0.9297
Scaled model to 2 layers and width 32
Step 1 validation loss: 0.7773
Scaled model to 2 layers and width 64
Step 2 validation loss: 0.7773
```

Ran a minimal training cycle with compression and generated text from the model:
```
Model output: hllo world
```


## Bigger Batch Smoke Test
Executed `python unified_workflow.py --steps 9 --dataset-size 100` after adding warm-up optimisation. Final lines:
```
Epoch 1 raw_loss=0.5525 acc=0.692 | compressed_loss=0.5449 acc=0.718 direct_loss=0.0000 ratio=1.07
Step 8 validation loss: 0.4727 K=0.248 C=0.126 S=0.309
Final validation loss: 0.4824 K=0.245 C=0.131 S=0.308
Safety gate triggered Safety gate triggered: C=0.476, S=0.292
Collapsed model validation loss: 0.6928360462188721
```

### Inference Conversation
```
User: hi
Model: hi
User: ok
Model: ok
```

## Bigger Training Smoke Test

Executed `python unified_workflow.py --steps 7 --dataset-size 64` after updating
the training loop with extra optimizer steps. Final lines:

```
Step 6 validation loss: 0.4922 K=0.252 C=0.118 S=0.306
Final validation loss: 0.4785 K=0.264 C=0.105 S=0.307
Safety gate triggered Safety gate triggered: C=0.476, S=0.297
Collapsed model validation loss: 0.6666421890258789
Workflow results: [(0, 1.015625, 0.2431640625, 0.126953125, 0.30909082293510437), (1, 0.74609375, 0.04248046875, 0.0306396484375, 0.2524452209472656), (2, 0.66796875, 0.11181640625, 0.06396484375, 0.2690799832344055), (3, 0.734375, 0.095703125, 0.044189453125, 0.2644684910774231), (4, 0.5546875, 0.220703125, 0.08837890625, 0.29613998532295227), (5, 0.73046875, 0.03759765625, 0.0654296875, 0.25516262650489807), (6, 0.4921875, 0.251953125, 0.11767578125, 0.30603474378585815), (7, 0.478515625, 0.263671875, 0.10498046875, 0.3072776794433594)]
```

### Inference Conversation (temperature=0.9, top-p=0.95)

```
User: hi
Model: hi
User: how are you?
Model: how are you?
```

## Continuous Training Test
Loaded existing weights when present.
Performed 2 scaling steps and 1 plateau step on a 16-sample dataset.
Final validation loss: 0.7383 with the collapsed model at 0.6924.

## Diffusion LM Smoke Test
Installed requirements and ran `python unified_workflow.py --steps 2 --dataset-size 32 --max-len 32 --diffusion`:
```
Epoch 0 raw_loss=4.7188 acc=0.188 | compressed_loss=0.0000 acc=0.000 direct_loss=0.0000 ratio=0.00
Epoch 1 raw_loss=4.6094 acc=0.185 | compressed_loss=0.0000 acc=0.000 direct_loss=0.0000 ratio=0.00
Step 0 validation loss: 3.9844 K=0.311 C=0.109 S=0.351
Epoch 0 raw_loss=3.6445 acc=0.355 | compressed_loss=0.0000 acc=0.000 direct_loss=0.0000 ratio=0.00
Epoch 1 raw_loss=2.4531 acc=0.544 | compressed_loss=0.0000 acc=0.000 direct_loss=0.0000 ratio=0.00
Step 1 validation loss: 3.2656 K=0.371 C=0.088 S=0.357
Final validation loss: 3.2344 K=0.373 C=0.087 S=0.357
Diffusion sample: [1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0]
Diffusion inference output bits: [0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
```

## Rigorous Training Regime
Ran `python tests/rigorous_training_regime.py`:

```
### Progressive Scale-Up (causal=True)

Step 0 validation loss: 0.7167
Scaled model to 1 layers and width 32
Step 1 validation loss: 0.6880
Scaled model to 1 layers and width 32
Step 2 validation loss: 0.7019
Scaled model to 1 layers and width 32
Duration: 0.23s

### Progressive Scale-Up (causal=False)

Step 0 validation loss: 0.8581
Scaled model to 1 layers and width 32
Step 1 validation loss: 0.7439
Scaled model to 1 layers and width 32
Step 2 validation loss: 0.7068
Scaled model to 1 layers and width 32
Duration: 0.21s

### Unified Workflow (causal=True)

Loaded model from weights/model.pt.gz
Epoch 0 raw_loss=0.6719 acc=0.581 | compressed_loss=0.6875 acc=0.586 direct_loss=0.0000 ratio=1.09
Step 0 validation loss: 0.6367 K=0.091 C=0.069 S=0.284
Epoch 0 raw_loss=0.6328 acc=0.605 | compressed_loss=0.6328 acc=0.612 direct_loss=0.0000 ratio=1.09
Step 1 validation loss: 0.6914 K=0.202 C=0.049 S=0.305
Epoch 0 raw_loss=0.5312 acc=0.718 | compressed_loss=0.6445 acc=0.628 direct_loss=0.0000 ratio=1.09
Plateau 0 validation loss: 0.5469 K=0.096 C=0.118 S=0.290
Final validation loss: 0.5430 K=0.099 C=0.104 S=0.289
Safety gate triggered Safety gate triggered: C=0.484, S=0.285
Collapsed model validation loss: 0.8396304845809937
Workflow results: [(0, 0.63671875, 0.09130859375, 0.0693359375, 0.28369221091270447), (1, 0.69140625, 0.2021484375, 0.049072265625, 0.3053092062473297), (2, 0.546875, 0.09619140625, 0.1181640625, 0.2900315225124359), (3, 0.54296875, 0.09912109375, 0.10400390625, 0.289362370967865)]
Inference on 'hi': [0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1]

Duration: 8.48s

### Unified Workflow (causal=False / Diffusion)

Loaded model from weights/model.pt.gz
Epoch 0 raw_loss=0.8232 acc=0.391 | compressed_loss=0.0000 acc=0.000 direct_loss=0.0000 ratio=0.00
Step 0 validation loss: 0.9805 K=0.098 C=0.067 S=0.285
Epoch 0 raw_loss=0.7471 acc=0.561 | compressed_loss=0.0000 acc=0.000 direct_loss=0.0000 ratio=0.00
Step 1 validation loss: 1.0547 K=0.134 C=0.091 S=0.294
Epoch 0 raw_loss=0.7520 acc=0.609 | compressed_loss=0.0000 acc=0.000 direct_loss=0.0000 ratio=0.00
Plateau 0 validation loss: 0.2119 K=0.187 C=0.185 S=0.332
Final validation loss: 0.2188 K=0.187 C=0.176 S=0.330
Collapsed model validation loss: 0.6897413730621338
Diffusion sample: [1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1]
Workflow results: [(0, 0.98046875, 0.09765625, 0.06689453125, 0.28478696942329407), (1, 1.0546875, 0.1337890625, 0.0908203125, 0.29406091570854187), (2, 0.2119140625, 0.1865234375, 0.1845703125, 0.33178743720054626), (3, 0.21875, 0.1865234375, 0.17578125, 0.32961323857307434)]
Diffusion inference output bits: [1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1]
Duration: 24.25s
```

## Rigorous Training Regime (2025-08-06)
Ran `python tests/rigorous_training_regime.py`:

```
### Progressive Scale-Up (causal=True)

Step 0 validation loss: 0.6921
Scaled model to 1 layers and width 32
Step 1 validation loss: 0.7171
Scaled model to 1 layers and width 32
Step 2 validation loss: 0.6914
Scaled model to 1 layers and width 32
Duration: 0.27s

### Progressive Scale-Up (causal=False)

Step 0 validation loss: 0.8465
Scaled model to 1 layers and width 32
Step 1 validation loss: 0.7123
Scaled model to 1 layers and width 32
Step 2 validation loss: 0.7009
Scaled model to 1 layers and width 32
Duration: 0.26s

### Unified Workflow (causal=True)

Epoch 0 raw_loss=1.1094 acc=0.593 | compressed_loss=1.1465 acc=0.599 direct_loss=0.0000 ratio=1.09
Step 0 validation loss: 0.8945 K=0.301 C=0.092 S=0.339
Epoch 0 raw_loss=0.9453 acc=0.601 | compressed_loss=0.9707 acc=0.617 direct_loss=0.0000 ratio=1.09
Step 1 validation loss: 0.9180 K=0.301 C=0.088 S=0.338
Epoch 0 raw_loss=0.8984 acc=0.593 | compressed_loss=0.9590 acc=0.599 direct_loss=0.0000 ratio=1.09
Plateau 0 validation loss: 0.7969 K=0.243 C=0.095 S=0.324
Final validation loss: 0.7930 K=0.244 C=0.094 S=0.324
Safety gate triggered Safety gate triggered: C=0.484, S=0.314
Collapsed model validation loss: 0.6552348732948303
Workflow results: [(0, 0.89453125, 0.30078125, 0.09228515625, 0.33890560269355774), (1, 0.91796875, 0.30078125, 0.08837890625, 0.33844876289367676), (2, 0.796875, 0.2431640625, 0.0947265625, 0.32405367493629456), (3, 0.79296875, 0.244140625, 0.09423828125, 0.32419103384017944)]
Inference on 'hi': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Duration: 5.26s

### Unified Workflow (causal=False / Diffusion)

Loaded model from weights/model.pt.gz
Epoch 0 raw_loss=1.2266 acc=0.590 | compressed_loss=0.0000 acc=0.000 direct_loss=0.0000 ratio=0.00
Step 0 validation loss: 0.8359 K=0.165 C=0.032 S=0.296
Epoch 0 raw_loss=0.7617 acc=0.603 | compressed_loss=0.0000 acc=0.000 direct_loss=0.0000 ratio=0.00
Step 1 validation loss: 0.7891 K=0.025 C=0.043 S=0.268
Epoch 0 raw_loss=0.7158 acc=0.553 | compressed_loss=0.0000 acc=0.000 direct_loss=0.0000 ratio=0.00
Plateau 0 validation loss: 0.5391 K=0.113 C=0.056 S=0.287
Final validation loss: 0.5391 K=0.116 C=0.060 S=0.287
Collapsed model validation loss: 0.7268564701080322
Diffusion sample: [1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1]
Workflow results: [(0, 0.8359375, 0.1650390625, 0.0322265625, 0.29598498344421387), (1, 0.7890625, 0.0250244140625, 0.04345703125, 0.26766154170036316), (2, 0.5390625, 0.11328125, 0.05615234375, 0.2867652475833893), (3, 0.5390625, 0.1162109375, 0.06005859375, 0.28735819458961487)]
Diffusion inference output bits: [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0]
Duration: 3.70s
```

## Rigorous Training Regime (2025-08-06 - 10-step alt length/width)
Ran `python tests/rigorous_training_regime.py`:

```
### Progressive Scale-Up (causal=True)

Step 0 validation loss: 0.4615
Step 1 validation loss: 0.4427
Step 2 validation loss: 0.4282
Step 3 validation loss: 0.4202
Step 4 validation loss: 0.4175
Scaled length; seq_len=128 width=32 params=8674
Step 5 validation loss: 0.5383
Scaled width; seq_len=128 width=64 params=33730
Step 6 validation loss: 0.4334
Step 7 validation loss: 0.4304
Scaled length; seq_len=256 width=64 params=33730
Step 8 validation loss: 0.5085
Scaled width; seq_len=256 width=128 params=132994
Step 9 validation loss: 0.4279
Duration: 38.96s

### Progressive Scale-Up (causal=False)

Step 0 validation loss: 0.4292
Step 1 validation loss: 0.4053
Step 2 validation loss: 0.4003
Step 3 validation loss: 0.3997
Scaled length; seq_len=128 width=32 params=8674
Step 4 validation loss: 0.4162
Scaled width; seq_len=128 width=64 params=33730
Step 5 validation loss: 0.4173
Scaled length; seq_len=256 width=64 params=33730
Step 6 validation loss: 0.4160
Scaled width; seq_len=256 width=128 params=132994
Step 7 validation loss: 0.4211
Scaled length; seq_len=512 width=128 params=132994
Step 8 validation loss: 0.4227
Scaled width; seq_len=512 width=256 params=528130
Step 9 validation loss: 0.4146
Duration: 173.71s

### Unified Workflow (causal=True)

Epoch 0 raw_loss=3.1562 acc=0.540 | compressed_loss=3.4531 acc=0.529 direct_loss=0.0000 ratio=1.09
Step 0 validation loss: 2.9688 K=0.559 C=0.220 S=0.475
Epoch 0 raw_loss=2.7188 acc=0.540 | compressed_loss=2.9883 acc=0.529 direct_loss=0.0000 ratio=1.09
Step 1 validation loss: 3.4531 K=0.566 C=0.222 S=0.481
Epoch 0 raw_loss=3.0625 acc=0.540 | compressed_loss=3.4414 acc=0.529 direct_loss=0.0000 ratio=1.09
Plateau 0 validation loss: 3.0781 K=0.559 C=0.219 S=0.474
Final validation loss: 3.0938 K=0.559 C=0.220 S=0.475
Safety gate triggered Safety gate triggered: C=0.484, S=0.466
Collapsed model validation loss: 0.6677278280258179
Workflow results: [(0, 2.96875, 0.55859375, 0.2197265625, 0.4746275246143341), (1, 3.453125, 0.56640625, 0.2216796875, 0.4808752238750458), (2, 3.078125, 0.55859375, 0.21875, 0.47436484694480896), (3, 3.09375, 0.55859375, 0.2197265625, 0.474519282579422)]
Inference on 'hi': [1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1]

Duration: 2.50s

### Unified Workflow (causal=False / Diffusion)

Loaded model from weights/model.pt.gz
Epoch 0 raw_loss=4.3984 acc=0.271 | compressed_loss=0.0000 acc=0.000 direct_loss=0.0000 ratio=0.00
Step 0 validation loss: 4.9688 K=0.512 C=0.208 S=0.449
Epoch 0 raw_loss=3.5859 acc=0.225 | compressed_loss=0.0000 acc=0.000 direct_loss=0.0000 ratio=0.00
Step 1 validation loss: 4.6562 K=0.477 C=0.200 S=0.428
Epoch 0 raw_loss=3.3008 acc=0.225 | compressed_loss=0.0000 acc=0.000 direct_loss=0.0000 ratio=0.00
Plateau 0 validation loss: 3.5469 K=0.439 C=0.158 S=0.396
Final validation loss: 3.5625 K=0.436 C=0.156 S=0.396
Collapsed model validation loss: 0.6747412085533142
Diffusion sample: [1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1]
Workflow results: [(0, 4.96875, 0.51171875, 0.2080078125, 0.44865939021110535), (1, 4.65625, 0.4765625, 0.2001953125, 0.4284386932849884), (2, 3.546875, 0.439453125, 0.158203125, 0.3957676589488983), (3, 3.5625, 0.435546875, 0.15625, 0.39555999636650085)]
Diffusion inference output bits: [1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1]
Duration: 3.42s
```

## WikiText Training Attempt (2025-09-??)
Attempted minimal training on real WikiText-2 data using `train_loop` with dropout 0.1 and evaluation dropout 0.0. Training failed due to a telemetry shape mismatch:

```
RuntimeError: The size of tensor a (4) must match the size of tensor b (64) at non-singleton dimension 1
```

As a sanity check, ran `hil_safe_inference` on an untrained model in evaluation mode (dropout=0.0):

```
Inference output bits: [[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
```

## WikiText Training Debug (2025-09-??)
Ran a minimal `train_loop` on parity-protected WikiText-2 samples with dropout 0.1:

```
Epoch 0 raw_loss=0.6278 acc=0.724 | compressed_loss=0.0000 acc=0.000 direct_loss=0.0000 ratio=0.00
```