File size: 15,582 Bytes
7b4c2a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import torch
import torch.nn as nn
import torch.distributed as dist
from typing import List, Optional, Dict, Any, Tuple
import logging
import os
from contextlib import contextmanager

from torch.distributed.fsdp import FullyShardedDataParallel, ShardingStrategy
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
try:
    from torch.distributed.pipeline.sync import Pipe
    from torch.distributed._pipeline.sync import balance
except Exception:  # pragma: no cover - Pipe may not be available in CPU builds
    Pipe = None
    balance = None

from .model import BitTransformerLM, LoggingTransformerEncoderLayer
from .error_handling import with_error_recovery, safe_operation
from .types import DeviceType, WorldSize, ProcessRank


@with_error_recovery(max_retries=2)
def setup_distributed(rank: ProcessRank = 0, 
                      world_size: WorldSize = 1, 
                      backend: str = "nccl",
                      init_method: str = "tcp://localhost:23456") -> bool:
    """Initialize distributed training environment."""
    if world_size <= 1:
        return False
    
    try:
        dist.init_process_group(
            backend=backend,
            init_method=init_method,
            world_size=world_size,
            rank=rank
        )
        logging.info(f"Initialized distributed training: rank {rank}/{world_size}")
        return True
    except Exception as e:
        logging.error(f"Failed to initialize distributed training: {e}")
        return False


def wrap_fsdp(model: BitTransformerLM, 
              sharding_strategy: ShardingStrategy = ShardingStrategy.FULL_SHARD,
              **kwargs) -> FullyShardedDataParallel:
    """Return an optimized FSDP wrapped model with transformer-aware sharding."""
    device = kwargs.pop("device_id", None)
    if device is None and torch.cuda.is_available():
        device = torch.cuda.current_device()
    
    # Configure FSDP with transformer-specific optimizations
    fsdp_config = {
        "sharding_strategy": sharding_strategy,
        "cpu_offload": kwargs.pop("cpu_offload", None),
        "mixed_precision": kwargs.pop("mixed_precision", None),
        "auto_wrap_policy": transformer_auto_wrap_policy,
        "backward_prefetch": kwargs.pop("backward_prefetch", None),
        "forward_prefetch": kwargs.pop("forward_prefetch", False),
        "limit_all_gathers": kwargs.pop("limit_all_gathers", True),
        "use_orig_params": kwargs.pop("use_orig_params", True),
        **kwargs
    }
    
    # Remove None values
    fsdp_config = {k: v for k, v in fsdp_config.items() if v is not None}
    
    if device is not None:
        model = model.to(device)
        fsdp_config["device_id"] = device
    
    return FullyShardedDataParallel(model, **fsdp_config)


class OptimizedPipeline(nn.Module):
    """Enhanced pipeline parallelism with BitTransformerLM optimizations."""
    
    def __init__(self, 
                 model: BitTransformerLM, 
                 num_stages: int = 1,
                 chunks: int = 1,
                 checkpoint: bool = True):
        super().__init__()
        
        if Pipe is None:
            raise RuntimeError("Pipeline parallelism not available in this build")
        
        self.num_stages = num_stages
        self.chunks = chunks
        self.checkpoint = checkpoint
        
        # Split model across pipeline stages
        if num_stages > 1:
            self.pipeline_model = self._create_pipeline_stages(model, num_stages)
        else:
            self.pipeline_model = Pipe(nn.Sequential(model), chunks=chunks)
    
    def _create_pipeline_stages(self, model: BitTransformerLM, num_stages: int) -> Pipe:
        """Create optimized pipeline stages for BitTransformerLM."""
        # Extract layers for pipeline partitioning
        layers = []
        
        # Add embedding layers
        if hasattr(model, 'embedding'):
            layers.append(model.embedding)
        if hasattr(model, 'pos_encoding'):
            layers.append(model.pos_encoding)
        
        # Add transformer layers
        if hasattr(model, 'layers'):
            layers.extend(model.layers)
        elif hasattr(model, 'transformer'):
            layers.extend(model.transformer.layers)
        
        # Add output layers
        if hasattr(model, 'output_projection'):
            layers.append(model.output_projection)
        
        # Balance layers across stages
        if balance is not None:
            partitions = balance(len(layers), num_stages)
        else:
            # Simple equal partitioning
            layers_per_stage = len(layers) // num_stages
            partitions = [layers_per_stage] * num_stages
            partitions[-1] += len(layers) % num_stages
        
        # Create stages
        stages = []
        start_idx = 0
        for partition_size in partitions:
            end_idx = start_idx + partition_size
            stage_layers = layers[start_idx:end_idx]
            stages.append(nn.Sequential(*stage_layers))
            start_idx = end_idx
        
        return Pipe(nn.Sequential(*stages), chunks=self.chunks)
    
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Forward pass through pipeline."""
        return self.pipeline_model(x)


def make_pipeline(model: BitTransformerLM, 
                 chunks: int = 1,
                 num_stages: int = 1,
                 checkpoint: bool = True) -> OptimizedPipeline:
    """Create an optimized pipeline with advanced parallelism features."""
    return OptimizedPipeline(
        model=model,
        num_stages=num_stages, 
        chunks=chunks,
        checkpoint=checkpoint
    )


class DistributedTrainingManager:
    """Manages distributed training configuration and optimization."""
    
    def __init__(self, 
                 world_size: WorldSize,
                 rank: ProcessRank,
                 use_pipeline: bool = False,
                 use_fsdp: bool = True):
        self.world_size = world_size
        self.rank = rank
        self.use_pipeline = use_pipeline
        self.use_fsdp = use_fsdp
        self.is_distributed = world_size > 1
        
        self.logger = logging.getLogger(__name__)
    
    def setup_model(self, 
                   model: BitTransformerLM,
                   pipeline_stages: int = 1,
                   fsdp_config: Optional[Dict[str, Any]] = None) -> nn.Module:
        """Set up model for distributed training."""
        if not self.is_distributed:
            return model
        
        with safe_operation("distributed_model_setup"):
            if self.use_pipeline and pipeline_stages > 1:
                self.logger.info(f"Setting up pipeline parallelism with {pipeline_stages} stages")
                return make_pipeline(
                    model, 
                    chunks=2,
                    num_stages=pipeline_stages
                )
            
            elif self.use_fsdp:
                self.logger.info("Setting up FSDP for data parallelism")
                fsdp_config = fsdp_config or {}
                return wrap_fsdp(model, **fsdp_config)
            
            else:
                self.logger.info("Using standard DistributedDataParallel")
                return nn.parallel.DistributedDataParallel(model)
    
    def optimize_communication(self, model: nn.Module) -> None:
        """Apply communication optimizations for distributed training."""
        if not self.is_distributed:
            return
        
        # Enable bucketing for DDP
        if isinstance(model, nn.parallel.DistributedDataParallel):
            # Set reasonable bucket size for gradient communication
            model._set_ddp_bucket_cap_mb(25)  # 25 MB buckets
            
        # Apply gradient compression if available
        try:
            if hasattr(model, '_register_comm_hook'):
                from torch.distributed.algorithms.ddp_comm_hooks import default
                model.register_comm_hook(
                    dist.group.WORLD, 
                    default.fp16_compress_hook
                )
        except ImportError:
            pass
    
    @contextmanager
    def training_context(self):
        """Context manager for distributed training setup."""
        try:
            if self.is_distributed:
                self.logger.info("Entering distributed training context")
                # Set CUDA device for current rank
                if torch.cuda.is_available():
                    torch.cuda.set_device(self.rank)
            yield
        finally:
            if self.is_distributed:
                self.logger.info("Exiting distributed training context")


def cleanup_distributed():
    """Clean up distributed training environment."""
    if dist.is_initialized():
        dist.destroy_process_group()
        logging.info("Distributed training cleaned up")


def get_distributed_config() -> Dict[str, Any]:
    """Get current distributed training configuration."""
    if not dist.is_initialized():
        return {"distributed": False}
    
    return {
        "distributed": True,
        "world_size": dist.get_world_size(),
        "rank": dist.get_rank(),
        "backend": dist.get_backend(),
        "local_rank": int(os.environ.get("LOCAL_RANK", 0)) if "LOCAL_RANK" in os.environ else None,
    }


# Utility functions for distributed operations
def all_reduce_tensor(tensor: torch.Tensor, 
                     op: dist.ReduceOp = dist.ReduceOp.SUM) -> torch.Tensor:
    """All-reduce operation on tensor across all processes."""
    if not dist.is_initialized():
        return tensor
    
    dist.all_reduce(tensor, op=op)
    return tensor


def gather_tensors(tensor: torch.Tensor, 
                  dst: int = 0) -> Optional[List[torch.Tensor]]:
    """Gather tensors from all processes to destination rank."""
    if not dist.is_initialized():
        return [tensor]
    
    if dist.get_rank() == dst:
        tensor_list = [torch.zeros_like(tensor) for _ in range(dist.get_world_size())]
        dist.gather(tensor, tensor_list, dst=dst)
        return tensor_list
    else:
        dist.gather(tensor, dst=dst)
        return None


def broadcast_tensor(tensor: torch.Tensor, src: int = 0) -> torch.Tensor:
    """Broadcast tensor from source rank to all processes."""
    if not dist.is_initialized():
        return tensor
    
    dist.broadcast(tensor, src=src)
    return tensor


# Advanced pipeline scheduling optimization
class PipelineScheduler:
    """Advanced scheduler for pipeline parallelism with load balancing."""
    
    def __init__(self, num_stages: int, world_size: int):
        self.num_stages = num_stages
        self.world_size = world_size
        self.stage_times = [0.0] * num_stages
        self.load_balance_enabled = True
    
    def update_stage_timing(self, stage_id: int, execution_time: float):
        """Update execution time for a pipeline stage."""
        if 0 <= stage_id < self.num_stages:
            # Exponential moving average for timing
            alpha = 0.1
            self.stage_times[stage_id] = (1 - alpha) * self.stage_times[stage_id] + alpha * execution_time
    
    def get_optimal_chunks(self, batch_size: int) -> int:
        """Calculate optimal number of chunks based on stage timing."""
        if not self.load_balance_enabled:
            return max(1, batch_size // 8)  # Default chunking
        
        # Balance based on slowest stage
        max_stage_time = max(self.stage_times) if any(self.stage_times) else 1.0
        avg_stage_time = sum(self.stage_times) / len(self.stage_times) if self.stage_times else 1.0
        
        # More chunks for imbalanced pipelines
        imbalance_factor = max_stage_time / max(avg_stage_time, 1e-6)
        optimal_chunks = max(2, min(batch_size, int(4 * imbalance_factor)))
        
        return optimal_chunks


# Memory-efficient gradient synchronization
def efficient_gradient_sync(model: nn.Module, gradient_clipping: float = 1.0):
    """Perform memory-efficient gradient synchronization across processes."""
    if not dist.is_initialized():
        return
    
    # Gradient clipping before synchronization
    if gradient_clipping > 0:
        total_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), gradient_clipping)
        
        # Broadcast clipping statistics for monitoring
        if dist.get_rank() == 0:
            logging.debug(f"Gradient norm before clipping: {total_norm.item():.4f}")
    
    # Efficient gradient all-reduce with bucketing
    bucket_size_mb = 25  # 25MB buckets for optimal network usage
    parameters = list(model.parameters())
    
    for param in parameters:
        if param.grad is not None:
            # Asynchronous all-reduce for better overlap
            dist.all_reduce(param.grad, async_op=False)
            param.grad /= dist.get_world_size()


# Advanced memory management for distributed training
class DistributedMemoryManager:
    """Manages memory efficiently across distributed processes."""
    
    def __init__(self, enable_cpu_offload: bool = False):
        self.enable_cpu_offload = enable_cpu_offload
        self.memory_stats = {}
        self.peak_memory = 0
    
    def monitor_memory(self):
        """Monitor GPU memory usage across processes."""
        if torch.cuda.is_available():
            current_memory = torch.cuda.memory_allocated()
            max_memory = torch.cuda.max_memory_allocated()
            
            self.memory_stats = {
                "current_gb": current_memory / 1e9,
                "peak_gb": max_memory / 1e9,
                "rank": dist.get_rank() if dist.is_initialized() else 0
            }
            
            self.peak_memory = max(self.peak_memory, current_memory)
    
    def optimize_memory_usage(self):
        """Apply memory optimizations based on current usage."""
        if torch.cuda.is_available():
            # Clear cache if memory usage is high
            if torch.cuda.memory_allocated() > 0.8 * torch.cuda.max_memory_allocated():
                torch.cuda.empty_cache()
                logging.info("Cleared CUDA cache due to high memory usage")
    
    def get_memory_report(self) -> Dict[str, float]:
        """Get comprehensive memory usage report."""
        self.monitor_memory()
        return self.memory_stats


# Global instances for advanced features
pipeline_scheduler = PipelineScheduler(num_stages=1, world_size=1)
memory_manager = DistributedMemoryManager()


def setup_advanced_distributed_training(
    rank: ProcessRank,
    world_size: WorldSize,
    enable_memory_monitoring: bool = True,
    enable_pipeline_scheduling: bool = True
) -> Dict[str, Any]:
    """Set up advanced distributed training with optimizations."""
    global pipeline_scheduler, memory_manager
    
    # Initialize base distributed setup
    success = setup_distributed(rank, world_size)
    if not success:
        return {"distributed": False}
    
    # Initialize advanced features
    if enable_pipeline_scheduling:
        pipeline_scheduler = PipelineScheduler(num_stages=world_size, world_size=world_size)
    
    if enable_memory_monitoring:
        memory_manager = DistributedMemoryManager()
        memory_manager.monitor_memory()
    
    config = get_distributed_config()
    config.update({
        "pipeline_scheduling": enable_pipeline_scheduling,
        "memory_monitoring": enable_memory_monitoring,
        "advanced_features": True
    })
    
    logging.info(f"Advanced distributed training initialized on rank {rank}")
    return config