BitTransformerLM / recursive_integration_flow.py
WCNegentropy's picture
🤖 Updated BitTransformerLM from development space
36c78b1 verified
raw
history blame
3.81 kB
import torch
import torch.nn.functional as F
from torch.profiler import profile
from bit_transformer import (
BitTransformerLM,
quantize_dynamic,
hil_safe_inference,
collapse_submodel,
)
from bit_transformer.training import train_loop
from bit_transformer.torch_utils import cpu_autocast
def train(
model: BitTransformerLM,
data: torch.Tensor,
epochs: int = 1,
compress_prob: float = 0.5,
log: bool = False,
forward_kwargs: dict | None = None,
) -> list[dict]:
"""Train with random compression; returns per-epoch metrics."""
return train_loop(
model,
data,
epochs=epochs,
compress_prob=compress_prob,
direct_prob=0.0,
log=log,
forward_kwargs=forward_kwargs,
)
def recursive_integration_flow(steps: int = 4, max_len: int = 64) -> None:
"""Run a dynamic scale-up loop with telemetry-based gating."""
train_bits = torch.randint(0, 2, (64, max_len), dtype=torch.long)
valid_bits = torch.randint(0, 2, (16, max_len), dtype=torch.long)
input_bits = torch.randint(0, 2, (1, max_len), dtype=torch.long)
bit_sequence_data = train_bits.tolist()
best_K = best_C = best_S = 0.0
model = BitTransformerLM(
d_model=32,
nhead=4,
num_layers=1,
dim_feedforward=64,
max_seq_len=max_len,
use_act=True,
act_threshold=0.7,
reversible=True,
chunk_size=max_len,
use_autocast=True,
)
results = []
for step in range(steps + 1):
epochs = min(10, 2 + step // 2)
train(model, train_bits, epochs=epochs, compress_prob=0.5, log=True)
with torch.no_grad():
with cpu_autocast():
logits, telemetry = model(valid_bits)
pred = logits[:, :-1, :].reshape(-1, 2)
target = valid_bits[:, 1:].reshape(-1)
val_loss = F.cross_entropy(pred, target).item()
k = telemetry["negentropy_logits"].mean().item()
c = telemetry["lz_complexity_logits"].mean().item()
s = telemetry["symbiosis_score"].mean().item()
print(f"Step {step} validation loss: {val_loss:.4f} K={k:.3f} C={c:.3f} S={s:.3f}")
results.append((step, val_loss, k, c, s))
if step > 0:
if k < best_K - 0.3 or c < best_C - 0.3 or s < best_S - 0.3:
print(f"\u26a0\ufe0f Step {step} regressed below metric floor. Halting.")
break
best_K = max(best_K, k)
best_C = max(best_C, c)
best_S = max(best_S, s)
if step < steps:
if step % 2 == 0:
model = model.double_width()
else:
model = model.double_layers()
# Post-scaling optimizations
with cpu_autocast():
model(input_bits)
qmodel = quantize_dynamic(model)
qmodel.eval()
safe_output = hil_safe_inference(
qmodel, input_bits, c_floor=0.5, s_floor=0.2
)
student_model, _ = collapse_submodel(
bit_sequence_data,
target_params=dict(
d_model=16,
nhead=4,
num_layers=1,
dim_feedforward=32,
max_seq_len=max_len,
),
floors={"negentropy": 0.2, "lz_complexity": 0.5, "symbiosis_score": 0.2},
)
if hasattr(torch, "compile"):
try:
compiled = torch.compile(student_model)
except RuntimeError as exc:
print(f"Compilation skipped: {exc}")
compiled = student_model
else:
compiled = student_model
compiled.eval()
with profile() as prof:
compiled(input_bits)
prof.export_chrome_trace("trace12.json")
print("Safe output bits:", safe_output[0].tolist())
if __name__ == "__main__":
recursive_integration_flow()