BitTransformerLM / integration_flow.py
WCNegentropy's picture
🤖 Updated BitTransformerLM from development space
36c78b1 verified
raw
history blame
3.11 kB
import torch
from torch.profiler import profile
from bit_transformer import (
BitTransformerLM,
quantize_dynamic,
hil_safe_inference,
collapse_submodel,
)
from bit_transformer.training import train_loop
from bit_transformer.torch_utils import cpu_autocast
def train(
model: BitTransformerLM,
data: torch.Tensor,
epochs: int = 3,
compress_prob: float = 0.5,
direct_prob: float = 0.0,
log: bool = False,
forward_kwargs: dict | None = None,
) -> list[dict]:
"""Train on bit sequences with optional random compression.
If ``direct_prob`` is positive, some batches are fed using their
run-length encoded representation packed into bits. Loss on these
direct-compressed batches is tracked separately.
Returns a list of per-epoch metric dictionaries containing raw and
compressed loss/accuracy statistics and the mean compression ratio.
"""
return train_loop(
model,
data,
epochs=epochs,
compress_prob=compress_prob,
direct_prob=direct_prob,
log=log,
forward_kwargs=forward_kwargs,
)
def main() -> None:
data = torch.randint(0, 2, (64, 128), dtype=torch.long)
validation_bits = torch.randint(0, 2, (16, 128), dtype=torch.long)
input_bits = torch.randint(0, 2, (1, 128), dtype=torch.long)
bit_sequence_data = data.tolist()
model = BitTransformerLM(
d_model=32,
nhead=4,
num_layers=1,
dim_feedforward=64,
max_seq_len=128,
use_act=True,
act_threshold=0.7,
reversible=True,
chunk_size=128,
)
for step in range(1, 13):
if step % 2 == 0:
model = model.double_width()
else:
model = model.double_layers()
train(model, data, epochs=3, compress_prob=0.5, log=True)
_, telemetry = model(validation_bits)
K = telemetry["negentropy_logits"].mean().item()
C = telemetry["lz_complexity_logits"].mean().item()
S = telemetry["symbiosis_score"].mean().item()
assert (
K > 0.3 and C > 0.35 and S > 0.5
), f"Step {step} telemetry floor failure"
with cpu_autocast():
model(input_bits)
quantized_model = quantize_dynamic(model)
quantized_model.eval()
safe_output, _ = hil_safe_inference(
quantized_model, input_bits, c_floor=0.35, s_floor=0.5
)
student_model, _ = collapse_submodel(
bit_sequence_data,
target_params=dict(
d_model=16,
nhead=4,
num_layers=1,
dim_feedforward=32,
max_seq_len=128,
),
floors={"negentropy": 0.3, "lz_complexity": 0.35, "symbiosis_score": 0.5},
)
compiled_model = (
torch.compile(student_model)
if hasattr(torch, "compile")
else student_model
)
compiled_model.eval()
with profile() as prof:
compiled_model(input_bits)
prof.export_chrome_trace("trace12.json")
print("Safe output bits:", safe_output.squeeze(0).tolist())
if __name__ == "__main__":
main()