BitTransformerLM / create_dataset.py
WCNegentropy's picture
πŸ€– Updated BitTransformerLM from development space
36c78b1 verified
raw
history blame
2.06 kB
#!/usr/bin/env python3
"""
BitTransformerLM Dataset Creation Script
Usage:
python create_dataset.py --token YOUR_HF_TOKEN --repo-id YOUR_REPO_NAME
This script creates a comprehensive dataset for BitTransformerLM training
and uploads it to HuggingFace Hub with proper metadata and organization.
"""
import argparse
import sys
from pathlib import Path
# Add the bit_transformer module to path
sys.path.insert(0, str(Path(__file__).parent))
from bit_transformer.dataset_builder import create_bittransformerlm_dataset
def main():
parser = argparse.ArgumentParser(description="Create BitTransformerLM Dataset")
parser.add_argument("--token", required=True, help="HuggingFace access token")
parser.add_argument("--repo-id", default="BitTransformerLM", help="Dataset repository ID")
parser.add_argument("--private", action="store_true", default=True, help="Make dataset private")
parser.add_argument("--samples", type=int, default=25000, help="Total number of samples")
args = parser.parse_args()
print("πŸš€ Starting BitTransformerLM Dataset Creation")
print(f"Repository: {args.repo_id}")
print(f"Private: {args.private}")
print(f"Target samples: {args.samples}")
print("-" * 50)
try:
dataset_url = create_bittransformerlm_dataset(
hf_token=args.token,
repo_id=args.repo_id
)
print("\n" + "=" * 50)
print("πŸŽ‰ SUCCESS! Dataset created and uploaded")
print(f"πŸ“ URL: {dataset_url}")
print("=" * 50)
print("\nπŸ“‹ Next Steps:")
print("1. View your dataset on HuggingFace Hub")
print("2. Test loading with: `from datasets import load_dataset`")
print("3. Integrate with BitTransformerLM training pipeline")
print("4. Monitor dataset usage and performance metrics")
except Exception as e:
print(f"\n❌ ERROR: {e}")
print("Please check your token and repository permissions.")
sys.exit(1)
if __name__ == "__main__":
main()