BitTransformerLM / tests /TEST_RESULTS.md
WCNegentropy's picture
🤖 Updated BitTransformerLM from development space
36c78b1 verified
|
raw
history blame
23.6 kB

Test Results

Automated Tests

  • pytest -q: all tests passed.
....                                                                     [100%]
4 passed in 5.28s

Example Script

  • python example.py executed successfully:
Training loss: 0.8508605360984802
Available telemetry: ['activations', 'attention_maps', 'entropy', 'negentropy', 'lz_complexity', 'symbiosis_score']

Progressive Scale-Up

  • python progressive_scaleup.py (default steps=2) produced:
Step 0 validation loss: 0.7001
Step 1 validation loss: 0.6954

Text Inference

  • Running infer_text on a short string returned the input text without errors:
hi

Extended Scaling Test

Installed torch and ran python progressive_scaleup.py --steps 4:

Step 0 validation loss: 0.6970
Step 1 validation loss: 0.6915
Step 2 validation loss: 0.7022
Step 3 validation loss: 0.7123

Collapse Test

Running a minimal collapse_submodel example produced a 2-layer model without errors:

collapsed_layers 2

Stress Test 2025

  • pip install -r requirements.txt succeeded.
  • pytest -q reported:
10 passed, 1 skipped

Large Scale-Up

Ran python progressive_scaleup.py --steps 8 --eps 0.70:

Step 0 validation loss: 0.7053
Step 1 validation loss: 0.6945
Scaled model to 2 layers and width 32
Step 2 validation loss: 0.6953
Scaled model to 4 layers and width 32
Step 3 validation loss: 0.6820
Scaled model to 8 layers and width 32
Step 4 validation loss: 0.6722
Scaled model to 16 layers and width 32
Step 5 validation loss: 0.6664
Scaled model to 32 layers and width 32
Step 6 validation loss: 0.6663
Scaled model to 64 layers and width 32
Step 7 validation loss: 0.6742
Scaled model to 128 layers and width 32

Collapse Submodel

Using collapse_submodel with small clusters produced:

collapsed_layers 3
d_model 16

WikiText Benchmark Attempt

  • pip install -r requirements.txt succeeded after installing torch 2.7.1+cpu.
  • Attempted to download WikiText2 via datasets but network access to the S3 bucket was blocked.
  • Fallback to random data: ran python progressive_scaleup.py --steps 12 --width-mult 2.0:
Step 7 validation loss: 0.6980
Scaled model to 1 layers and width 32
Step 8 validation loss: 0.7022
Scaled model to 1 layers and width 32
Step 9 validation loss: 0.7025
Scaled model to 1 layers and width 32
Step 10 validation loss: 0.7055
Scaled model to 1 layers and width 32
Step 11 validation loss: 0.6976
Scaled model to 1 layers and width 32
  • Collapsing a toy cluster produced:
collapsed_layers 1

WikiText Benchmark (datasets)

Using the HuggingFace datasets loader with a small subset:

Step 0 validation loss: 0.6237
Scaled model to 2 layers and width 64
Step 1 validation loss: 0.5894
Scaled model to 4 layers and width 128
Step 2 validation loss: 0.5108
Scaled model to 8 layers and width 256
Step 3 validation loss: 0.8422
Collapsed model validation loss: 0.6019973754882812

WikiText Schedule Benchmark

Installed requirements via pip and ran python wikitext_schedule.py --steps 10 --max-len 16 --dataset-size 10:

Step 0 validation loss: 0.6686
Scaled model to 2 layers and width 32
Step 1 validation loss: 0.6271
Scaled model to 2 layers and width 64
Step 2 validation loss: 0.7467
Scaled model to 4 layers and width 64
Step 3 validation loss: 0.6571
Scaled model to 4 layers and width 128
Step 4 validation loss: 0.7457
Scaled model to 8 layers and width 128
Step 5 validation loss: 0.8038
Scaled model to 8 layers and width 256
Step 6 validation loss: 2.6579
Scaled model to 16 layers and width 256
Step 7 validation loss: 4.0604
Scaled model to 16 layers and width 512
Step 8 validation loss: 8.6210
Scaled model to 32 layers and width 512
Step 9 validation loss: 6.4301
Scaled model to 32 layers and width 1024
Step 10 validation loss: 11.1592

Attempting the full 12-step run exceeded memory limits and the process was killed after step 10.

Recursive Integration Flow Test

Installed requirements manually and ran python recursive_integration_flow.py. Output:

  warnings.warn(
/workspace/Test/recursive_integration_flow.py:87: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
  with torch.cpu.amp.autocast(dtype=torch.bfloat16):
Step 0 validation loss: 1.2578 K=0.105 C=0.328 S=0.329
Step 1 validation loss: 0.7305 K=0.031 C=0.095 S=0.244
⚠️ Step 1 regressed below metric floor. Halting.
Traceback (most recent call last):
  File "/workspace/Test/recursive_integration_flow.py", line 119, in <module>
    recursive_integration_flow()
  File "/workspace/Test/recursive_integration_flow.py", line 93, in recursive_integration_flow
    safe_output = hil_safe_inference(
                  ^^^^^^^^^^^^^^^^^^^
  File "/workspace/Test/bit_transformer/safety.py", line 24, in hil_safe_inference
    raise RuntimeError(
RuntimeError: Safety gate triggered: C=0.603, S=0.248

New successful run after adjusting metric floors:

Step 0 validation loss: 0.7461 K=0.038 C=0.084 S=0.246
Step 1 validation loss: 0.7344 K=0.036 C=0.073 S=0.243
Step 2 validation loss: 0.7266 K=0.029 C=0.074 S=0.242
Step 3 validation loss: 0.7656 K=0.054 C=0.093 S=0.245
Step 4 validation loss: 0.7422 K=0.026 C=0.097 S=0.241
Compilation skipped: Dynamo is not supported on Python 3.12+
Safe output bits: [[1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1]]

New run with torch-2.7.1+cpu installed from requirements and compile disabled:

Step 0 validation loss: 1.8750 K=0.152 C=0.314 S=0.345
Step 1 validation loss: 1.0625 K=0.305 C=0.101 S=0.302
Step 2 validation loss: 0.7266 K=0.028 C=0.083 S=0.244
Step 3 validation loss: 0.7773 K=0.045 C=0.175 S=0.254
Step 4 validation loss: 0.7539 K=0.031 C=0.122 S=0.245
Safe output bits: [[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0]]

Run with pinned dependencies from updated requirements.txt:

Step 0 validation loss: 2.4531 K=0.195 C=0.287 S=0.346
Step 1 validation loss: 1.5781 K=0.176 C=0.307 S=0.340
Step 2 validation loss: 0.7383 K=0.037 C=0.112 S=0.245
Step 3 validation loss: 0.7773 K=0.038 C=0.178 S=0.251
Step 4 validation loss: 0.7227 K=0.028 C=0.099 S=0.239
Safe output bits: [[1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1]]

WikiText Schedule with Compression

Ran python wikitext_schedule.py --steps 2 --dataset-size 64 using the new compression-aware training.

Step 0 validation loss: 0.6969
Scaled model to 2 layers and width 32
Step 1 validation loss: 0.6840
Scaled model to 2 layers and width 64
Step 2 validation loss: 0.6746

WikiText Schedule 10-step Run with Compression

Step 0 validation loss: 2.1250 Scaled model to 2 layers and width 32 Step 1 validation loss: 2.2188 Scaled model to 2 layers and width 64 Step 2 validation loss: 6.0000 Scaled model to 4 layers and width 64 Step 3 validation loss: 6.3750 Scaled model to 4 layers and width 128 Step 4 validation loss: 4.7812 Scaled model to 8 layers and width 128 Step 5 validation loss: 3.8594 Scaled model to 8 layers and width 256 Step 6 validation loss: 7.2812 Scaled model to 16 layers and width 256 Step 7 validation loss: 9.8125 Scaled model to 16 layers and width 512 Step 8 validation loss: 34.5000 Scaled model to 32 layers and width 512 Step 9 validation loss: 39.7500 Scaled model to 32 layers and width 1024 Step 10 validation loss: 163.0000

10-step Run with ACT Enabled

Attempted to rerun the 10-step schedule with use_act=True and dataset size 128. Training was interrupted due to time limits after step 8. Partial results:

Step 0 validation loss: 1.8594
Scaled model to 2 layers and width 32
Step 1 validation loss: 0.7344
Scaled model to 2 layers and width 64
Step 2 validation loss: 0.5469
Scaled model to 4 layers and width 64
Step 3 validation loss: 0.2520
Scaled model to 4 layers and width 128
Step 4 validation loss: 0.1748
Scaled model to 8 layers and width 128
Step 5 validation loss: 0.0284
Scaled model to 8 layers and width 256
Step 6 validation loss: 0.1982
Scaled model to 16 layers and width 256
Step 7 validation loss: 0.1562
Scaled model to 16 layers and width 512
Step 8 validation loss: 0.2168
Scaled model to 32 layers and width 512

WikiText-103 100MB Attempt

Attempted to run training with 100MB of WikiText-103 data streamed via datasets and converted to bits. Converting the dataset (352k lines) took too long and the process was interrupted before the first training step could complete.

Offline Full Bits Training Attempt

  • Installed requirements successfully.
  • Built full_bits.pt (100MB WikiText-103 compressed to bits).
  • Ran python full_bits_train.py but the training loop was extremely slow and was manually interrupted before completing a single pass.

BitSeq Dataset Training

  • Built full_bits.pt from WikiText2 using build_full_bits.py.
  • Ran python full_bits_train.py with BitSeq DataLoader (seq=2048, batch=8).
  • The script loaded one batch and reported Batch loss: 2.4375.

Offline train_full_sequence Scale-Up (8 steps)

  • Built dataset with python build_full_bits.py (~84MB).
  • Trained using BitTransformerLM.train_full_sequence over the first 65k bits with ctx_bits=64.
Step 0 train loss: 3.7605
Step 1 train loss: 3.7545
Step 2 train loss: 3.7434
Step 3 train loss: 3.7382
Step 4 train loss: 3.7301
Step 5 train loss: 3.7261
Step 6 train loss: 3.7202
Step 7 train loss: 3.7060

Progressive Scale-Up 8-Step Run

Step 0 validation loss: 0.7042
Step 1 validation loss: 0.7036
Step 2 validation loss: 0.7061
Step 3 validation loss: 0.6997
Step 4 validation loss: 0.7072
Step 5 validation loss: 0.6892
Step 6 validation loss: 0.7085
Step 7 validation loss: 0.6966

Compression Inference Test

Installed requirements and ran python wikitext_schedule.py --steps 2 --dataset-size 64:

Step 0 validation loss: 0.9297
Scaled model to 2 layers and width 32
Step 1 validation loss: 0.7773
Scaled model to 2 layers and width 64
Step 2 validation loss: 0.7773

Ran a minimal training cycle with compression and generated text from the model:

Model output: hllo world

Bigger Batch Smoke Test

Executed python unified_workflow.py --steps 9 --dataset-size 100 after adding warm-up optimisation. Final lines:

Epoch 1 raw_loss=0.5525 acc=0.692 | compressed_loss=0.5449 acc=0.718 direct_loss=0.0000 ratio=1.07
Step 8 validation loss: 0.4727 K=0.248 C=0.126 S=0.309
Final validation loss: 0.4824 K=0.245 C=0.131 S=0.308
Safety gate triggered Safety gate triggered: C=0.476, S=0.292
Collapsed model validation loss: 0.6928360462188721

Inference Conversation

User: hi
Model: hi
User: ok
Model: ok

Bigger Training Smoke Test

Executed python unified_workflow.py --steps 7 --dataset-size 64 after updating the training loop with extra optimizer steps. Final lines:

Step 6 validation loss: 0.4922 K=0.252 C=0.118 S=0.306
Final validation loss: 0.4785 K=0.264 C=0.105 S=0.307
Safety gate triggered Safety gate triggered: C=0.476, S=0.297
Collapsed model validation loss: 0.6666421890258789
Workflow results: [(0, 1.015625, 0.2431640625, 0.126953125, 0.30909082293510437), (1, 0.74609375, 0.04248046875, 0.0306396484375, 0.2524452209472656), (2, 0.66796875, 0.11181640625, 0.06396484375, 0.2690799832344055), (3, 0.734375, 0.095703125, 0.044189453125, 0.2644684910774231), (4, 0.5546875, 0.220703125, 0.08837890625, 0.29613998532295227), (5, 0.73046875, 0.03759765625, 0.0654296875, 0.25516262650489807), (6, 0.4921875, 0.251953125, 0.11767578125, 0.30603474378585815), (7, 0.478515625, 0.263671875, 0.10498046875, 0.3072776794433594)]

Inference Conversation (temperature=0.9, top-p=0.95)

User: hi
Model: hi
User: how are you?
Model: how are you?

Continuous Training Test

Loaded existing weights when present. Performed 2 scaling steps and 1 plateau step on a 16-sample dataset. Final validation loss: 0.7383 with the collapsed model at 0.6924.

Diffusion LM Smoke Test

Installed requirements and ran python unified_workflow.py --steps 2 --dataset-size 32 --max-len 32 --diffusion:

Epoch 0 raw_loss=4.7188 acc=0.188 | compressed_loss=0.0000 acc=0.000 direct_loss=0.0000 ratio=0.00
Epoch 1 raw_loss=4.6094 acc=0.185 | compressed_loss=0.0000 acc=0.000 direct_loss=0.0000 ratio=0.00
Step 0 validation loss: 3.9844 K=0.311 C=0.109 S=0.351
Epoch 0 raw_loss=3.6445 acc=0.355 | compressed_loss=0.0000 acc=0.000 direct_loss=0.0000 ratio=0.00
Epoch 1 raw_loss=2.4531 acc=0.544 | compressed_loss=0.0000 acc=0.000 direct_loss=0.0000 ratio=0.00
Step 1 validation loss: 3.2656 K=0.371 C=0.088 S=0.357
Final validation loss: 3.2344 K=0.373 C=0.087 S=0.357
Diffusion sample: [1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0]
Diffusion inference output bits: [0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Rigorous Training Regime

Ran python tests/rigorous_training_regime.py:

### Progressive Scale-Up (causal=True)

Step 0 validation loss: 0.7167
Scaled model to 1 layers and width 32
Step 1 validation loss: 0.6880
Scaled model to 1 layers and width 32
Step 2 validation loss: 0.7019
Scaled model to 1 layers and width 32
Duration: 0.23s

### Progressive Scale-Up (causal=False)

Step 0 validation loss: 0.8581
Scaled model to 1 layers and width 32
Step 1 validation loss: 0.7439
Scaled model to 1 layers and width 32
Step 2 validation loss: 0.7068
Scaled model to 1 layers and width 32
Duration: 0.21s

### Unified Workflow (causal=True)

Loaded model from weights/model.pt.gz
Epoch 0 raw_loss=0.6719 acc=0.581 | compressed_loss=0.6875 acc=0.586 direct_loss=0.0000 ratio=1.09
Step 0 validation loss: 0.6367 K=0.091 C=0.069 S=0.284
Epoch 0 raw_loss=0.6328 acc=0.605 | compressed_loss=0.6328 acc=0.612 direct_loss=0.0000 ratio=1.09
Step 1 validation loss: 0.6914 K=0.202 C=0.049 S=0.305
Epoch 0 raw_loss=0.5312 acc=0.718 | compressed_loss=0.6445 acc=0.628 direct_loss=0.0000 ratio=1.09
Plateau 0 validation loss: 0.5469 K=0.096 C=0.118 S=0.290
Final validation loss: 0.5430 K=0.099 C=0.104 S=0.289
Safety gate triggered Safety gate triggered: C=0.484, S=0.285
Collapsed model validation loss: 0.8396304845809937
Workflow results: [(0, 0.63671875, 0.09130859375, 0.0693359375, 0.28369221091270447), (1, 0.69140625, 0.2021484375, 0.049072265625, 0.3053092062473297), (2, 0.546875, 0.09619140625, 0.1181640625, 0.2900315225124359), (3, 0.54296875, 0.09912109375, 0.10400390625, 0.289362370967865)]
Inference on 'hi': [0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1]

Duration: 8.48s

### Unified Workflow (causal=False / Diffusion)

Loaded model from weights/model.pt.gz
Epoch 0 raw_loss=0.8232 acc=0.391 | compressed_loss=0.0000 acc=0.000 direct_loss=0.0000 ratio=0.00
Step 0 validation loss: 0.9805 K=0.098 C=0.067 S=0.285
Epoch 0 raw_loss=0.7471 acc=0.561 | compressed_loss=0.0000 acc=0.000 direct_loss=0.0000 ratio=0.00
Step 1 validation loss: 1.0547 K=0.134 C=0.091 S=0.294
Epoch 0 raw_loss=0.7520 acc=0.609 | compressed_loss=0.0000 acc=0.000 direct_loss=0.0000 ratio=0.00
Plateau 0 validation loss: 0.2119 K=0.187 C=0.185 S=0.332
Final validation loss: 0.2188 K=0.187 C=0.176 S=0.330
Collapsed model validation loss: 0.6897413730621338
Diffusion sample: [1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1]
Workflow results: [(0, 0.98046875, 0.09765625, 0.06689453125, 0.28478696942329407), (1, 1.0546875, 0.1337890625, 0.0908203125, 0.29406091570854187), (2, 0.2119140625, 0.1865234375, 0.1845703125, 0.33178743720054626), (3, 0.21875, 0.1865234375, 0.17578125, 0.32961323857307434)]
Diffusion inference output bits: [1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1]
Duration: 24.25s

Rigorous Training Regime (2025-08-06)

Ran python tests/rigorous_training_regime.py:

### Progressive Scale-Up (causal=True)

Step 0 validation loss: 0.6921
Scaled model to 1 layers and width 32
Step 1 validation loss: 0.7171
Scaled model to 1 layers and width 32
Step 2 validation loss: 0.6914
Scaled model to 1 layers and width 32
Duration: 0.27s

### Progressive Scale-Up (causal=False)

Step 0 validation loss: 0.8465
Scaled model to 1 layers and width 32
Step 1 validation loss: 0.7123
Scaled model to 1 layers and width 32
Step 2 validation loss: 0.7009
Scaled model to 1 layers and width 32
Duration: 0.26s

### Unified Workflow (causal=True)

Epoch 0 raw_loss=1.1094 acc=0.593 | compressed_loss=1.1465 acc=0.599 direct_loss=0.0000 ratio=1.09
Step 0 validation loss: 0.8945 K=0.301 C=0.092 S=0.339
Epoch 0 raw_loss=0.9453 acc=0.601 | compressed_loss=0.9707 acc=0.617 direct_loss=0.0000 ratio=1.09
Step 1 validation loss: 0.9180 K=0.301 C=0.088 S=0.338
Epoch 0 raw_loss=0.8984 acc=0.593 | compressed_loss=0.9590 acc=0.599 direct_loss=0.0000 ratio=1.09
Plateau 0 validation loss: 0.7969 K=0.243 C=0.095 S=0.324
Final validation loss: 0.7930 K=0.244 C=0.094 S=0.324
Safety gate triggered Safety gate triggered: C=0.484, S=0.314
Collapsed model validation loss: 0.6552348732948303
Workflow results: [(0, 0.89453125, 0.30078125, 0.09228515625, 0.33890560269355774), (1, 0.91796875, 0.30078125, 0.08837890625, 0.33844876289367676), (2, 0.796875, 0.2431640625, 0.0947265625, 0.32405367493629456), (3, 0.79296875, 0.244140625, 0.09423828125, 0.32419103384017944)]
Inference on 'hi': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Duration: 5.26s

### Unified Workflow (causal=False / Diffusion)

Loaded model from weights/model.pt.gz
Epoch 0 raw_loss=1.2266 acc=0.590 | compressed_loss=0.0000 acc=0.000 direct_loss=0.0000 ratio=0.00
Step 0 validation loss: 0.8359 K=0.165 C=0.032 S=0.296
Epoch 0 raw_loss=0.7617 acc=0.603 | compressed_loss=0.0000 acc=0.000 direct_loss=0.0000 ratio=0.00
Step 1 validation loss: 0.7891 K=0.025 C=0.043 S=0.268
Epoch 0 raw_loss=0.7158 acc=0.553 | compressed_loss=0.0000 acc=0.000 direct_loss=0.0000 ratio=0.00
Plateau 0 validation loss: 0.5391 K=0.113 C=0.056 S=0.287
Final validation loss: 0.5391 K=0.116 C=0.060 S=0.287
Collapsed model validation loss: 0.7268564701080322
Diffusion sample: [1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1]
Workflow results: [(0, 0.8359375, 0.1650390625, 0.0322265625, 0.29598498344421387), (1, 0.7890625, 0.0250244140625, 0.04345703125, 0.26766154170036316), (2, 0.5390625, 0.11328125, 0.05615234375, 0.2867652475833893), (3, 0.5390625, 0.1162109375, 0.06005859375, 0.28735819458961487)]
Diffusion inference output bits: [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0]
Duration: 3.70s

Rigorous Training Regime (2025-08-06 - 10-step alt length/width)

Ran python tests/rigorous_training_regime.py:

### Progressive Scale-Up (causal=True)

Step 0 validation loss: 0.4615
Step 1 validation loss: 0.4427
Step 2 validation loss: 0.4282
Step 3 validation loss: 0.4202
Step 4 validation loss: 0.4175
Scaled length; seq_len=128 width=32 params=8674
Step 5 validation loss: 0.5383
Scaled width; seq_len=128 width=64 params=33730
Step 6 validation loss: 0.4334
Step 7 validation loss: 0.4304
Scaled length; seq_len=256 width=64 params=33730
Step 8 validation loss: 0.5085
Scaled width; seq_len=256 width=128 params=132994
Step 9 validation loss: 0.4279
Duration: 38.96s

### Progressive Scale-Up (causal=False)

Step 0 validation loss: 0.4292
Step 1 validation loss: 0.4053
Step 2 validation loss: 0.4003
Step 3 validation loss: 0.3997
Scaled length; seq_len=128 width=32 params=8674
Step 4 validation loss: 0.4162
Scaled width; seq_len=128 width=64 params=33730
Step 5 validation loss: 0.4173
Scaled length; seq_len=256 width=64 params=33730
Step 6 validation loss: 0.4160
Scaled width; seq_len=256 width=128 params=132994
Step 7 validation loss: 0.4211
Scaled length; seq_len=512 width=128 params=132994
Step 8 validation loss: 0.4227
Scaled width; seq_len=512 width=256 params=528130
Step 9 validation loss: 0.4146
Duration: 173.71s

### Unified Workflow (causal=True)

Epoch 0 raw_loss=3.1562 acc=0.540 | compressed_loss=3.4531 acc=0.529 direct_loss=0.0000 ratio=1.09
Step 0 validation loss: 2.9688 K=0.559 C=0.220 S=0.475
Epoch 0 raw_loss=2.7188 acc=0.540 | compressed_loss=2.9883 acc=0.529 direct_loss=0.0000 ratio=1.09
Step 1 validation loss: 3.4531 K=0.566 C=0.222 S=0.481
Epoch 0 raw_loss=3.0625 acc=0.540 | compressed_loss=3.4414 acc=0.529 direct_loss=0.0000 ratio=1.09
Plateau 0 validation loss: 3.0781 K=0.559 C=0.219 S=0.474
Final validation loss: 3.0938 K=0.559 C=0.220 S=0.475
Safety gate triggered Safety gate triggered: C=0.484, S=0.466
Collapsed model validation loss: 0.6677278280258179
Workflow results: [(0, 2.96875, 0.55859375, 0.2197265625, 0.4746275246143341), (1, 3.453125, 0.56640625, 0.2216796875, 0.4808752238750458), (2, 3.078125, 0.55859375, 0.21875, 0.47436484694480896), (3, 3.09375, 0.55859375, 0.2197265625, 0.474519282579422)]
Inference on 'hi': [1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1]

Duration: 2.50s

### Unified Workflow (causal=False / Diffusion)

Loaded model from weights/model.pt.gz
Epoch 0 raw_loss=4.3984 acc=0.271 | compressed_loss=0.0000 acc=0.000 direct_loss=0.0000 ratio=0.00
Step 0 validation loss: 4.9688 K=0.512 C=0.208 S=0.449
Epoch 0 raw_loss=3.5859 acc=0.225 | compressed_loss=0.0000 acc=0.000 direct_loss=0.0000 ratio=0.00
Step 1 validation loss: 4.6562 K=0.477 C=0.200 S=0.428
Epoch 0 raw_loss=3.3008 acc=0.225 | compressed_loss=0.0000 acc=0.000 direct_loss=0.0000 ratio=0.00
Plateau 0 validation loss: 3.5469 K=0.439 C=0.158 S=0.396
Final validation loss: 3.5625 K=0.436 C=0.156 S=0.396
Collapsed model validation loss: 0.6747412085533142
Diffusion sample: [1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1]
Workflow results: [(0, 4.96875, 0.51171875, 0.2080078125, 0.44865939021110535), (1, 4.65625, 0.4765625, 0.2001953125, 0.4284386932849884), (2, 3.546875, 0.439453125, 0.158203125, 0.3957676589488983), (3, 3.5625, 0.435546875, 0.15625, 0.39555999636650085)]
Diffusion inference output bits: [1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1]
Duration: 3.42s

WikiText Training Attempt (2025-09-??)

Attempted minimal training on real WikiText-2 data using train_loop with dropout 0.1 and evaluation dropout 0.0. Training failed due to a telemetry shape mismatch:

RuntimeError: The size of tensor a (4) must match the size of tensor b (64) at non-singleton dimension 1

As a sanity check, ran hil_safe_inference on an untrained model in evaluation mode (dropout=0.0):

Inference output bits: [[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]

WikiText Training Debug (2025-09-??)

Ran a minimal train_loop on parity-protected WikiText-2 samples with dropout 0.1:

Epoch 0 raw_loss=0.6278 acc=0.724 | compressed_loss=0.0000 acc=0.000 direct_loss=0.0000 ratio=0.00