|
import os, sys; sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) |
|
|
|
import torch |
|
import mcp_server as dash |
|
from mcp_server import app |
|
from bit_transformer.dashboard_app import ModelManager, MetricDriftWarning |
|
from bit_transformer import BitTransformerLM |
|
from bit_transformer.optimization import configure_optimizer |
|
from bit_transformer.bit_io import text_to_bits |
|
import time |
|
|
|
|
|
def test_exec_endpoint_removed(): |
|
with app.test_client() as client: |
|
resp = client.post("/exec", json={"code": "print('OK')"}) |
|
assert resp.status_code in (403, 404) |
|
|
|
|
|
def test_status_endpoint(tmp_path): |
|
dash.manager = ModelManager(snapshot_dir=tmp_path) |
|
params = {"d_model": 16, "nhead": 2, "num_layers": 1, "dim_feedforward": 32, "max_seq_len": 8} |
|
with app.test_client() as client: |
|
client.post("/init", json=params) |
|
resp = client.get("/status") |
|
data = resp.get_json() |
|
assert data["d_model"] == 16 and data["num_layers"] == 1 |
|
|
|
|
|
def test_modelmanager_compression(tmp_path): |
|
mgr = ModelManager(snapshot_dir=tmp_path) |
|
mgr.model = BitTransformerLM(d_model=16, nhead=2, num_layers=1, dim_feedforward=32, max_seq_len=8) |
|
mgr.optimizer, mgr.scheduler = configure_optimizer(mgr.model, lr=1e-3, total_steps=1) |
|
mgr.set_compression(True) |
|
bits = torch.randint(0, 2, (1, 8), dtype=torch.long) |
|
loss, ratio = mgr.train_step(bits) |
|
assert isinstance(loss, float) and 0 <= ratio <= 1.0 |
|
|
|
|
|
def test_metric_drift_warning(tmp_path): |
|
mgr = ModelManager(snapshot_dir=tmp_path, drift_window=2, drift_threshold=0.1) |
|
tele = { |
|
"negentropy_logits": torch.tensor([0.0]), |
|
"lz_complexity_logits": torch.tensor([0.0]), |
|
"symbiosis_score": torch.tensor([0.0]), |
|
} |
|
for _ in range(4): |
|
mgr._log_metrics(tele) |
|
tele_drift = { |
|
"negentropy_logits": torch.tensor([1.0]), |
|
"lz_complexity_logits": torch.tensor([0.0]), |
|
"symbiosis_score": torch.tensor([0.0]), |
|
} |
|
import pytest |
|
|
|
with pytest.warns(MetricDriftWarning): |
|
mgr._log_metrics(tele_drift) |
|
|
|
|
|
def test_dashboard_endpoints(tmp_path): |
|
dash.manager = ModelManager(snapshot_dir=tmp_path) |
|
params = {"d_model": 16, "nhead": 2, "num_layers": 1, "dim_feedforward": 32, "max_seq_len": 8} |
|
with app.test_client() as client: |
|
resp = client.post("/init", json=params) |
|
assert resp.status_code == 200 |
|
bits = torch.randint(0, 2, (1, 8), dtype=torch.long).tolist() |
|
train = client.post("/train", json={"bits": bits}) |
|
assert train.status_code == 200 |
|
job_id = train.get_json()["job_id"] |
|
for _ in range(20): |
|
job_resp = client.get(f"/job/{job_id}") |
|
data = job_resp.get_json() |
|
if data["status"] == "completed": |
|
assert "loss" in data["result"] |
|
break |
|
time.sleep(0.1) |
|
else: |
|
assert False, "training job did not complete" |
|
infer = client.post("/infer", json={"bits": bits}) |
|
assert infer.status_code == 200 and "predicted" in infer.get_json() |
|
|
|
|
|
def test_text_to_bits_and_dataset(tmp_path): |
|
dash.manager = ModelManager(snapshot_dir=tmp_path) |
|
with app.test_client() as client: |
|
resp = client.post("/text_to_bits", json={"text": "hi"}) |
|
assert resp.status_code == 200 |
|
assert resp.get_json()["bits"] == text_to_bits("hi") |
|
ds = client.get("/dataset?name=wikitext2&split=train&size=1&seq_len=8") |
|
data = ds.get_json() |
|
assert len(data["bits"]) == 1 and len(data["bits"][0]) == 8 |
|
|