| import pathlib | |
| import torch | |
| from bit_transformer import BitTransformerLM | |
| DATA_PATH = pathlib.Path('full_bits.pt') | |
| class BitSeq(torch.utils.data.IterableDataset): | |
| def __init__(self, path: str | pathlib.Path = DATA_PATH, seq: int = 2048) -> None: | |
| self.bits = torch.load(path, mmap=True) | |
| self.seq = seq | |
| def __len__(self) -> int: | |
| return (self.bits.numel() // self.seq) - 1 | |
| def __iter__(self): | |
| N = (self.bits.numel() // self.seq) - 1 | |
| for i in range(N): | |
| s = i * self.seq | |
| yield ( | |
| self.bits[s:s+self.seq].long(), | |
| self.bits[s+1:s+self.seq+1].long(), | |
| ) | |
| def main() -> None: | |
| dl = torch.utils.data.DataLoader( | |
| BitSeq(DATA_PATH, seq=2048), | |
| batch_size=8, | |
| num_workers=0, | |
| pin_memory=False, | |
| ) | |
| model = BitTransformerLM( | |
| d_model=64, | |
| nhead=4, | |
| num_layers=2, | |
| dim_feedforward=256, | |
| max_seq_len=2048, | |
| reversible=True, | |
| use_autocast=True, | |
| ) | |
| loss_fn = torch.nn.CrossEntropyLoss() | |
| xb, yb = next(iter(dl)) | |
| logits, _ = model(xb) | |
| pred = logits.reshape(-1, 2) | |
| target = yb.reshape(-1) | |
| loss = loss_fn(pred, target) | |
| print('Batch loss:', float(loss)) | |
| if __name__ == '__main__': | |
| main() | |