Add Comprehensive user handbook
Browse files- USER_GUIDE.md +957 -0
USER_GUIDE.md
ADDED
|
@@ -0,0 +1,957 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# BitTransformerLM User Guide
|
| 2 |
+
|
| 3 |
+
**Version:** 0.1.0 Experimental
|
| 4 |
+
**Last Updated:** August 2025
|
| 5 |
+
**Recommended Setup:** Use with [Claude Code](https://claude.ai/code) for optimal experience
|
| 6 |
+
|
| 7 |
+
## Table of Contents
|
| 8 |
+
|
| 9 |
+
1. [Quick Start](#quick-start)
|
| 10 |
+
2. [Architecture Overview](#architecture-overview)
|
| 11 |
+
3. [Core Features](#core-features)
|
| 12 |
+
4. [Installation & Setup](#installation--setup)
|
| 13 |
+
5. [Basic Usage Examples](#basic-usage-examples)
|
| 14 |
+
6. [Advanced Features](#advanced-features)
|
| 15 |
+
7. [Training Your Own Models](#training-your-own-models)
|
| 16 |
+
8. [Safety and Monitoring](#safety-and-monitoring)
|
| 17 |
+
9. [Distributed Training](#distributed-training)
|
| 18 |
+
10. [Performance Optimization](#performance-optimization)
|
| 19 |
+
11. [Troubleshooting](#troubleshooting)
|
| 20 |
+
12. [Best Practices](#best-practices)
|
| 21 |
+
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
## Quick Start
|
| 25 |
+
|
| 26 |
+
BitTransformerLM is an experimental transformer language model that operates directly on binary sequences (bits) rather than tokens. This unique approach enables fine-grained control over information processing and built-in safety monitoring.
|
| 27 |
+
|
| 28 |
+
### Minimal Example
|
| 29 |
+
```python
|
| 30 |
+
from bit_transformer import BitTransformerLM, example_training_step
|
| 31 |
+
|
| 32 |
+
# Run basic example
|
| 33 |
+
loss, telemetry = example_training_step()
|
| 34 |
+
print(f"Training loss: {loss}")
|
| 35 |
+
print(f"Available telemetry: {list(telemetry.keys())}")
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
### Text Processing Example
|
| 39 |
+
```python
|
| 40 |
+
from bit_transformer import BitTransformerLM, text_to_bits, bits_to_text
|
| 41 |
+
|
| 42 |
+
# Create model
|
| 43 |
+
model = BitTransformerLM(
|
| 44 |
+
d_model=128,
|
| 45 |
+
nhead=4,
|
| 46 |
+
num_layers=2,
|
| 47 |
+
dim_feedforward=256,
|
| 48 |
+
max_seq_len=256
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
# Convert text to bits and process
|
| 52 |
+
text = "Hello, world!"
|
| 53 |
+
bits = text_to_bits(text)
|
| 54 |
+
bit_tensor = torch.tensor(bits).unsqueeze(0)
|
| 55 |
+
|
| 56 |
+
# Forward pass
|
| 57 |
+
logits, telemetry = model(bit_tensor)
|
| 58 |
+
print(f"Input bits: {len(bits)}")
|
| 59 |
+
print(f"Output shape: {logits.shape}")
|
| 60 |
+
print(f"Telemetry metrics: {list(telemetry.keys())}")
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
---
|
| 64 |
+
|
| 65 |
+
## Architecture Overview
|
| 66 |
+
|
| 67 |
+
### Bit-Native Processing
|
| 68 |
+
Unlike traditional language models that use token embeddings, BitTransformerLM processes raw binary sequences:
|
| 69 |
+
|
| 70 |
+
- **Input**: Text → UTF-8 bytes → Bits with parity protection (9 bits per byte)
|
| 71 |
+
- **Processing**: Multi-head attention on bit embeddings
|
| 72 |
+
- **Output**: Probability distribution over next bit (0 or 1)
|
| 73 |
+
|
| 74 |
+
### Key Innovations
|
| 75 |
+
|
| 76 |
+
#### 1. **Reversible Transformer Layers**
|
| 77 |
+
- Memory-efficient computation that doesn't store intermediate activations
|
| 78 |
+
- Enables training of deeper models with same memory footprint
|
| 79 |
+
- Mathematically reversible operations for gradient computation
|
| 80 |
+
|
| 81 |
+
#### 2. **Built-in Safety Telemetry**
|
| 82 |
+
- **K (Negentropy)**: Measures information content vs random noise
|
| 83 |
+
- **C (LZ Complexity)**: Proxy for compressibility and pattern complexity
|
| 84 |
+
- **S (Symbiosis)**: Alignment with reference distributions
|
| 85 |
+
- Real-time monitoring and safety gates
|
| 86 |
+
|
| 87 |
+
#### 3. **Dual-Mode Operation**
|
| 88 |
+
- **Causal Mode**: Traditional autoregressive generation
|
| 89 |
+
- **Diffusion Mode**: Bidirectional denoising for higher quality output
|
| 90 |
+
|
| 91 |
+
#### 4. **Progressive Scaling**
|
| 92 |
+
- Dynamic architecture expansion based on validation performance
|
| 93 |
+
- Automatic addition of layers, width, or context length
|
| 94 |
+
- Curriculum learning from simple to complex patterns
|
| 95 |
+
|
| 96 |
+
---
|
| 97 |
+
|
| 98 |
+
## Core Features
|
| 99 |
+
|
| 100 |
+
### Text Processing
|
| 101 |
+
- **Parity-Protected Encoding**: Each byte gets a parity bit for error detection
|
| 102 |
+
- **UTF-8 Support**: Full Unicode text processing capability
|
| 103 |
+
- **Bidirectional Processing**: Support for both causal and diffusion modes
|
| 104 |
+
|
| 105 |
+
### Safety & Monitoring
|
| 106 |
+
- **Real-time Telemetry**: K/C/S metrics computed during inference
|
| 107 |
+
- **Safety Gates**: Automatic blocking of unsafe outputs
|
| 108 |
+
- **Metric Drift Detection**: Alerts when model behavior changes
|
| 109 |
+
- **Human-in-the-Loop**: Safe inference with retry mechanisms
|
| 110 |
+
|
| 111 |
+
### Memory Efficiency
|
| 112 |
+
- **Reversible Layers**: Significant memory savings for deep models
|
| 113 |
+
- **Gradient Checkpointing**: Trade compute for memory in training
|
| 114 |
+
- **Dynamic Quantization**: Runtime INT8 conversion for inference
|
| 115 |
+
- **4-bit QAT**: Quantization-aware training for extreme efficiency
|
| 116 |
+
|
| 117 |
+
### Advanced Training
|
| 118 |
+
- **Distributed Training**: FSDP and pipeline parallelism support
|
| 119 |
+
- **Mixed Precision**: FP16/BF16 optimization with CPU autocast
|
| 120 |
+
- **Compression Pipeline**: Run-length encoding for efficient storage
|
| 121 |
+
- **Progressive Curriculum**: Automatic difficulty scaling
|
| 122 |
+
|
| 123 |
+
---
|
| 124 |
+
|
| 125 |
+
## Installation & Setup
|
| 126 |
+
|
| 127 |
+
### Requirements
|
| 128 |
+
- Python 3.10 or later
|
| 129 |
+
- PyTorch 2.7.1 or later
|
| 130 |
+
- CUDA (optional, for GPU acceleration)
|
| 131 |
+
|
| 132 |
+
### Installation
|
| 133 |
+
```bash
|
| 134 |
+
# Clone repository
|
| 135 |
+
git clone https://huggingface.co/WCNegentropy/BitTransformerLM
|
| 136 |
+
cd BitTransformerLM
|
| 137 |
+
|
| 138 |
+
# Install dependencies
|
| 139 |
+
pip install -r requirements.txt
|
| 140 |
+
|
| 141 |
+
# For GPU support (optional)
|
| 142 |
+
pip install --extra-index-url https://download.pytorch.org/whl/cu118 torch==2.7.1+cu118
|
| 143 |
+
```
|
| 144 |
+
|
| 145 |
+
### Quick Test
|
| 146 |
+
```bash
|
| 147 |
+
# Run basic example
|
| 148 |
+
python example.py
|
| 149 |
+
|
| 150 |
+
# Expected output:
|
| 151 |
+
# Training loss: [some value]
|
| 152 |
+
# Available telemetry: ['activations', 'attention_maps', ...]
|
| 153 |
+
```
|
| 154 |
+
|
| 155 |
+
### **🤖 Recommended: Setup with Claude Code**
|
| 156 |
+
|
| 157 |
+
For the best experience, we recommend using [Claude Code](https://claude.ai/code) to set up and work with BitTransformerLM:
|
| 158 |
+
|
| 159 |
+
1. **Open Claude Code** and navigate to your project directory
|
| 160 |
+
2. **Clone the repository**: Claude Code can help with git operations and dependency management
|
| 161 |
+
3. **Interactive Setup**: Claude Code can guide you through configuration options and explain parameters
|
| 162 |
+
4. **Real-time Assistance**: Get help with model architecture, training parameters, and debugging
|
| 163 |
+
5. **Code Generation**: Generate custom training scripts and experiments with AI assistance
|
| 164 |
+
|
| 165 |
+
Claude Code provides contextual understanding of BitTransformerLM's unique architecture and can help you avoid common pitfalls when working with bit-native processing.
|
| 166 |
+
|
| 167 |
+
---
|
| 168 |
+
|
| 169 |
+
## Basic Usage Examples
|
| 170 |
+
|
| 171 |
+
### 1. Creating Models
|
| 172 |
+
|
| 173 |
+
```python
|
| 174 |
+
from bit_transformer import BitTransformerLM
|
| 175 |
+
|
| 176 |
+
# Small model for experimentation
|
| 177 |
+
small_model = BitTransformerLM(
|
| 178 |
+
d_model=64, # Embedding dimension
|
| 179 |
+
nhead=4, # Number of attention heads
|
| 180 |
+
num_layers=2, # Number of transformer layers
|
| 181 |
+
dim_feedforward=128, # Feedforward dimension
|
| 182 |
+
max_seq_len=128, # Maximum sequence length
|
| 183 |
+
reversible=True, # Use memory-efficient reversible layers
|
| 184 |
+
use_checkpoint=True # Enable gradient checkpointing
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
# Medium model for research
|
| 188 |
+
medium_model = BitTransformerLM(
|
| 189 |
+
d_model=512,
|
| 190 |
+
nhead=8,
|
| 191 |
+
num_layers=8,
|
| 192 |
+
dim_feedforward=2048,
|
| 193 |
+
max_seq_len=512,
|
| 194 |
+
reversible=True,
|
| 195 |
+
use_checkpoint=True,
|
| 196 |
+
chunk_size=64, # Chunked attention for long sequences
|
| 197 |
+
lambda_K=0.1, # Negentropy regularization weight
|
| 198 |
+
lambda_C=0.1, # Complexity regularization weight
|
| 199 |
+
lambda_S=0.1 # Symbiosis regularization weight
|
| 200 |
+
)
|
| 201 |
+
```
|
| 202 |
+
|
| 203 |
+
### 2. Text Generation
|
| 204 |
+
|
| 205 |
+
```python
|
| 206 |
+
from bit_transformer.bit_io import sample_text
|
| 207 |
+
|
| 208 |
+
# Generate text from prompt
|
| 209 |
+
prompt = "The future of AI is"
|
| 210 |
+
generated = sample_text(
|
| 211 |
+
model,
|
| 212 |
+
prompt=prompt,
|
| 213 |
+
max_new_tokens=20, # Generate ~20 new characters
|
| 214 |
+
temperature=0.8, # Sampling temperature
|
| 215 |
+
top_p=0.9 # Nucleus sampling
|
| 216 |
+
)
|
| 217 |
+
print(f"Generated: {generated}")
|
| 218 |
+
```
|
| 219 |
+
|
| 220 |
+
### 3. Safe Inference
|
| 221 |
+
|
| 222 |
+
```python
|
| 223 |
+
from bit_transformer import hil_safe_inference, text_to_bits
|
| 224 |
+
import torch
|
| 225 |
+
|
| 226 |
+
# Convert text to bits
|
| 227 |
+
text = "Hello, world!"
|
| 228 |
+
bits = torch.tensor(text_to_bits(text)).unsqueeze(0)
|
| 229 |
+
|
| 230 |
+
# Safe inference with telemetry monitoring
|
| 231 |
+
try:
|
| 232 |
+
output_bits, telemetry = hil_safe_inference(
|
| 233 |
+
model,
|
| 234 |
+
bits,
|
| 235 |
+
c_floor=0.3, # Minimum complexity threshold
|
| 236 |
+
s_floor=0.5, # Minimum symbiosis threshold
|
| 237 |
+
strict=True # Throw error if thresholds not met
|
| 238 |
+
)
|
| 239 |
+
print("✅ Safe inference completed")
|
| 240 |
+
print(f"K (Negentropy): {telemetry.get('negentropy_logits', 'N/A')}")
|
| 241 |
+
print(f"C (Complexity): {telemetry.get('lz_complexity_logits', 'N/A')}")
|
| 242 |
+
print(f"S (Symbiosis): {telemetry.get('symbiosis_score', 'N/A')}")
|
| 243 |
+
except Exception as e:
|
| 244 |
+
print(f"⚠️ Safety check failed: {e}")
|
| 245 |
+
```
|
| 246 |
+
|
| 247 |
+
### 4. Interactive Dashboard
|
| 248 |
+
|
| 249 |
+
```python
|
| 250 |
+
# Launch the interactive dashboard
|
| 251 |
+
python unified_workflow.py --dashboard
|
| 252 |
+
|
| 253 |
+
# Or programmatically
|
| 254 |
+
from bit_transformer.dashboard_app import run_dashboard
|
| 255 |
+
run_dashboard(host="localhost", port=5000)
|
| 256 |
+
```
|
| 257 |
+
|
| 258 |
+
The dashboard provides:
|
| 259 |
+
- Real-time training monitoring
|
| 260 |
+
- Telemetry visualization
|
| 261 |
+
- Model configuration controls
|
| 262 |
+
- HuggingFace checkpoint management
|
| 263 |
+
- Safe inference testing interface
|
| 264 |
+
|
| 265 |
+
---
|
| 266 |
+
|
| 267 |
+
## Advanced Features
|
| 268 |
+
|
| 269 |
+
### 1. Diffusion Mode Training
|
| 270 |
+
|
| 271 |
+
Diffusion mode enables bidirectional processing for higher quality generation:
|
| 272 |
+
|
| 273 |
+
```python
|
| 274 |
+
# Train with diffusion mode
|
| 275 |
+
python unified_workflow.py --diffusion --diffusion-steps 8 --dataset-size 32
|
| 276 |
+
|
| 277 |
+
# Different noise schedules
|
| 278 |
+
python unified_workflow.py --diffusion --noise-schedule cosine --diffusion-steps 16
|
| 279 |
+
|
| 280 |
+
# Diffusion curriculum (noise decay over epochs)
|
| 281 |
+
python unified_workflow.py --diffusion --diffusion-curriculum
|
| 282 |
+
```
|
| 283 |
+
|
| 284 |
+
**Diffusion Parameters:**
|
| 285 |
+
- `--diffusion-steps`: Number of denoising steps (higher = better quality)
|
| 286 |
+
- `--noise-schedule`: `linear`, `cosine`, or `exp` noise decay
|
| 287 |
+
- `--diffusion-curriculum`: Gradually reduce noise over training epochs
|
| 288 |
+
|
| 289 |
+
### 2. Progressive Scaling
|
| 290 |
+
|
| 291 |
+
Enable automatic model growth based on performance:
|
| 292 |
+
|
| 293 |
+
```python
|
| 294 |
+
from bit_transformer.training import train_loop
|
| 295 |
+
from bit_transformer.scale import expand_model
|
| 296 |
+
|
| 297 |
+
# Training loop with automatic scaling
|
| 298 |
+
model = BitTransformerLM(d_model=64, nhead=4, num_layers=2, dim_feedforward=128)
|
| 299 |
+
train_data = torch.randint(0, 2, (1000, 64))
|
| 300 |
+
|
| 301 |
+
# Train with progressive scaling
|
| 302 |
+
train_loop(
|
| 303 |
+
model,
|
| 304 |
+
train_data,
|
| 305 |
+
epochs=10,
|
| 306 |
+
batch_size=8,
|
| 307 |
+
# Progressive scaling will automatically trigger when validation loss plateaus
|
| 308 |
+
)
|
| 309 |
+
|
| 310 |
+
# Manual model expansion
|
| 311 |
+
expanded_model = expand_model(model, strategy="depth") # Add layers
|
| 312 |
+
expanded_model = expand_model(model, strategy="width") # Increase width
|
| 313 |
+
expanded_model = expand_model(model, strategy="context") # Extend context
|
| 314 |
+
```
|
| 315 |
+
|
| 316 |
+
### 3. Compression Pipeline
|
| 317 |
+
|
| 318 |
+
BitTransformerLM includes run-length encoding for efficient data storage:
|
| 319 |
+
|
| 320 |
+
```python
|
| 321 |
+
from bit_transformer import compress_bits, decompress_bits
|
| 322 |
+
|
| 323 |
+
# Compress bit sequences
|
| 324 |
+
original_bits = torch.tensor([0, 0, 0, 1, 1, 0, 1, 1, 1])
|
| 325 |
+
compressed = compress_bits(original_bits)
|
| 326 |
+
decompressed = decompress_bits(compressed)
|
| 327 |
+
|
| 328 |
+
print(f"Original: {original_bits}")
|
| 329 |
+
print(f"Compressed: {compressed}")
|
| 330 |
+
print(f"Decompressed: {decompressed}")
|
| 331 |
+
print(f"Compression ratio: {len(original_bits) / len(compressed):.2f}")
|
| 332 |
+
|
| 333 |
+
# Use compression in training
|
| 334 |
+
train_loop(
|
| 335 |
+
model,
|
| 336 |
+
data,
|
| 337 |
+
compress_prob=0.5, # 50% of training uses compressed data
|
| 338 |
+
compress_warmup=100 # Start compression after 100 steps
|
| 339 |
+
)
|
| 340 |
+
```
|
| 341 |
+
|
| 342 |
+
### 4. Quantization and Optimization
|
| 343 |
+
|
| 344 |
+
```python
|
| 345 |
+
from bit_transformer import quantize_dynamic, prepare_qat_fx, convert_qat_fx
|
| 346 |
+
|
| 347 |
+
# Dynamic quantization for inference
|
| 348 |
+
quantized_model = quantize_dynamic(model, dtype=torch.qint8)
|
| 349 |
+
|
| 350 |
+
# 4-bit quantization-aware training
|
| 351 |
+
qat_model = prepare_qat_fx(model)
|
| 352 |
+
# ... train qat_model ...
|
| 353 |
+
final_model = convert_qat_fx(qat_model)
|
| 354 |
+
|
| 355 |
+
# Enable mixed precision and compilation
|
| 356 |
+
train_loop(
|
| 357 |
+
model,
|
| 358 |
+
data,
|
| 359 |
+
amp=True, # Enable automatic mixed precision
|
| 360 |
+
compile_model=True # Use torch.compile for speedup
|
| 361 |
+
)
|
| 362 |
+
```
|
| 363 |
+
|
| 364 |
+
---
|
| 365 |
+
|
| 366 |
+
## Training Your Own Models
|
| 367 |
+
|
| 368 |
+
### Basic Training Script
|
| 369 |
+
|
| 370 |
+
```python
|
| 371 |
+
import torch
|
| 372 |
+
from bit_transformer import BitTransformerLM, train_loop, configure_optimizer
|
| 373 |
+
from bit_transformer.bit_io import text_to_bits
|
| 374 |
+
|
| 375 |
+
# Prepare training data
|
| 376 |
+
texts = ["Hello world", "How are you?", "BitTransformer is working!"]
|
| 377 |
+
all_bits = []
|
| 378 |
+
for text in texts:
|
| 379 |
+
bits = text_to_bits(text)
|
| 380 |
+
all_bits.extend(bits)
|
| 381 |
+
|
| 382 |
+
# Convert to tensor and create sequences
|
| 383 |
+
data = torch.tensor(all_bits)
|
| 384 |
+
sequences = data.unfold(0, 64, 32) # 64-bit sequences with 32-bit stride
|
| 385 |
+
|
| 386 |
+
# Create model
|
| 387 |
+
model = BitTransformerLM(
|
| 388 |
+
d_model=128,
|
| 389 |
+
nhead=8,
|
| 390 |
+
num_layers=4,
|
| 391 |
+
dim_feedforward=512,
|
| 392 |
+
max_seq_len=64,
|
| 393 |
+
reversible=True
|
| 394 |
+
)
|
| 395 |
+
|
| 396 |
+
# Configure optimizer
|
| 397 |
+
optimizer = configure_optimizer(model, lr=0.001, weight_decay=0.01)
|
| 398 |
+
|
| 399 |
+
# Training loop
|
| 400 |
+
train_loop(
|
| 401 |
+
model,
|
| 402 |
+
sequences,
|
| 403 |
+
epochs=10,
|
| 404 |
+
batch_size=4,
|
| 405 |
+
optimizer=optimizer,
|
| 406 |
+
amp=True, # Mixed precision
|
| 407 |
+
log=True # Enable logging
|
| 408 |
+
)
|
| 409 |
+
```
|
| 410 |
+
|
| 411 |
+
### Advanced Training Configuration
|
| 412 |
+
|
| 413 |
+
```python
|
| 414 |
+
# Advanced training with all features enabled
|
| 415 |
+
train_loop(
|
| 416 |
+
model,
|
| 417 |
+
data,
|
| 418 |
+
epochs=20,
|
| 419 |
+
batch_size=8,
|
| 420 |
+
accum_steps=4, # Gradient accumulation
|
| 421 |
+
amp=True, # Mixed precision
|
| 422 |
+
compile_model=True, # torch.compile optimization
|
| 423 |
+
|
| 424 |
+
# Compression settings
|
| 425 |
+
compress_prob=0.3, # 30% compression probability
|
| 426 |
+
compress_warmup=50, # Start compression after 50 steps
|
| 427 |
+
|
| 428 |
+
# Diffusion settings
|
| 429 |
+
diffusion=True, # Enable diffusion mode
|
| 430 |
+
diffusion_curriculum=True, # Decay noise over epochs
|
| 431 |
+
|
| 432 |
+
# Direct bit training
|
| 433 |
+
direct_prob=0.1, # 10% direct bit prediction
|
| 434 |
+
|
| 435 |
+
# Logging
|
| 436 |
+
log=True # Enable detailed logging
|
| 437 |
+
)
|
| 438 |
+
```
|
| 439 |
+
|
| 440 |
+
### Custom Training Loop
|
| 441 |
+
|
| 442 |
+
```python
|
| 443 |
+
import torch.nn.functional as F
|
| 444 |
+
from bit_transformer.utils import set_dropout
|
| 445 |
+
|
| 446 |
+
# Manual training loop for full control
|
| 447 |
+
model.train()
|
| 448 |
+
set_dropout(model, 0.1) # Enable dropout for training
|
| 449 |
+
|
| 450 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr=0.001)
|
| 451 |
+
criterion = F.cross_entropy
|
| 452 |
+
|
| 453 |
+
for epoch in range(10):
|
| 454 |
+
total_loss = 0
|
| 455 |
+
for batch in data_loader:
|
| 456 |
+
optimizer.zero_grad()
|
| 457 |
+
|
| 458 |
+
# Forward pass
|
| 459 |
+
logits, telemetry = model(batch)
|
| 460 |
+
|
| 461 |
+
# Compute loss
|
| 462 |
+
if logits.dim() == 3: # (batch, seq, 2)
|
| 463 |
+
targets = batch[:, 1:] # Next bit prediction
|
| 464 |
+
logits = logits[:, :-1] # Remove last prediction
|
| 465 |
+
loss = criterion(logits.reshape(-1, 2), targets.reshape(-1))
|
| 466 |
+
else:
|
| 467 |
+
loss = criterion(logits, batch)
|
| 468 |
+
|
| 469 |
+
# Add telemetry regularization
|
| 470 |
+
if model.lambda_K > 0:
|
| 471 |
+
loss += model.lambda_K * (1 - telemetry.get('negentropy_logits', 0))
|
| 472 |
+
if model.lambda_C > 0:
|
| 473 |
+
loss += model.lambda_C * (1 - telemetry.get('lz_complexity_logits', 0))
|
| 474 |
+
|
| 475 |
+
# Backward pass
|
| 476 |
+
loss.backward()
|
| 477 |
+
|
| 478 |
+
# Gradient clipping
|
| 479 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
| 480 |
+
|
| 481 |
+
optimizer.step()
|
| 482 |
+
total_loss += loss.item()
|
| 483 |
+
|
| 484 |
+
# Safety check
|
| 485 |
+
if telemetry.get('symbiosis_score', 1.0) < 0.3:
|
| 486 |
+
print("⚠️ Low symbiosis score detected")
|
| 487 |
+
|
| 488 |
+
print(f"Epoch {epoch}: Average loss = {total_loss / len(data_loader):.4f}")
|
| 489 |
+
```
|
| 490 |
+
|
| 491 |
+
---
|
| 492 |
+
|
| 493 |
+
## Safety and Monitoring
|
| 494 |
+
|
| 495 |
+
### Telemetry Metrics
|
| 496 |
+
|
| 497 |
+
BitTransformerLM provides three key safety metrics:
|
| 498 |
+
|
| 499 |
+
#### K (Negentropy) - Information Content
|
| 500 |
+
- **Range**: 0-1 (0 = random noise, 1 = perfectly ordered)
|
| 501 |
+
- **Purpose**: Measures departure from randomness
|
| 502 |
+
- **Interpretation**:
|
| 503 |
+
- Very low K (< 0.1): Output is noise-like
|
| 504 |
+
- Moderate K (0.3-0.7): Structured but varied output
|
| 505 |
+
- Very high K (> 0.9): Repetitive or overly structured
|
| 506 |
+
|
| 507 |
+
#### C (LZ Complexity) - Pattern Complexity
|
| 508 |
+
- **Range**: 0-1 (higher = more complex patterns)
|
| 509 |
+
- **Purpose**: Proxy for Lempel-Ziv compressibility
|
| 510 |
+
- **Interpretation**:
|
| 511 |
+
- Low C (< 0.3): Highly repetitive patterns
|
| 512 |
+
- Moderate C (0.3-0.7): Balanced complexity
|
| 513 |
+
- High C (> 0.8): Complex, varied patterns
|
| 514 |
+
|
| 515 |
+
#### S (Symbiosis) - Distribution Alignment
|
| 516 |
+
- **Range**: 0-1 (higher = better alignment)
|
| 517 |
+
- **Purpose**: Agreement with reference distributions via KL divergence
|
| 518 |
+
- **Interpretation**:
|
| 519 |
+
- Low S (< 0.3): Poor alignment with expected patterns
|
| 520 |
+
- Moderate S (0.5-0.8): Good alignment
|
| 521 |
+
- High S (> 0.8): Excellent alignment
|
| 522 |
+
|
| 523 |
+
### Safety Gates
|
| 524 |
+
|
| 525 |
+
```python
|
| 526 |
+
from bit_transformer.safety import SafetyGate, safe_sample_with_retry
|
| 527 |
+
|
| 528 |
+
# Configure safety gate
|
| 529 |
+
gate = SafetyGate(
|
| 530 |
+
c_floor=0.3, # Minimum complexity
|
| 531 |
+
s_floor=0.5, # Minimum symbiosis
|
| 532 |
+
decay=0.9, # EMA decay factor
|
| 533 |
+
burn_in=10 # Steps before gating starts
|
| 534 |
+
)
|
| 535 |
+
|
| 536 |
+
# Check if output should be blocked
|
| 537 |
+
should_block = gate.should_trigger(c_val=0.2, s_val=0.4) # True - below thresholds
|
| 538 |
+
|
| 539 |
+
# Safe sampling with automatic retry
|
| 540 |
+
output = safe_sample_with_retry(
|
| 541 |
+
model,
|
| 542 |
+
input_bits,
|
| 543 |
+
max_retries=3,
|
| 544 |
+
retry_strategy="diffusion" # Try diffusion mode on failure
|
| 545 |
+
)
|
| 546 |
+
```
|
| 547 |
+
|
| 548 |
+
### Metric Drift Detection
|
| 549 |
+
|
| 550 |
+
```python
|
| 551 |
+
from bit_transformer.telemetry import detect_metric_drift
|
| 552 |
+
|
| 553 |
+
# Monitor metric stability over time
|
| 554 |
+
metrics_history = [
|
| 555 |
+
{"K": 0.5, "C": 0.6, "S": 0.7},
|
| 556 |
+
{"K": 0.52, "C": 0.58, "S": 0.69},
|
| 557 |
+
{"K": 0.8, "C": 0.9, "S": 0.4}, # Drift detected!
|
| 558 |
+
# ... more metrics
|
| 559 |
+
]
|
| 560 |
+
|
| 561 |
+
drift_detected = detect_metric_drift(
|
| 562 |
+
metrics_history,
|
| 563 |
+
window=10, # Look back 10 steps
|
| 564 |
+
threshold=0.2 # Alert if change > 0.2
|
| 565 |
+
)
|
| 566 |
+
|
| 567 |
+
if drift_detected:
|
| 568 |
+
print("⚠️ Model behavior drift detected!")
|
| 569 |
+
```
|
| 570 |
+
|
| 571 |
+
---
|
| 572 |
+
|
| 573 |
+
## Distributed Training
|
| 574 |
+
|
| 575 |
+
### FSDP (Fully Sharded Data Parallel)
|
| 576 |
+
|
| 577 |
+
```python
|
| 578 |
+
from bit_transformer.distributed import wrap_fsdp, setup_distributed
|
| 579 |
+
import torch.distributed as dist
|
| 580 |
+
|
| 581 |
+
# Initialize distributed training
|
| 582 |
+
setup_distributed(rank=0, world_size=4)
|
| 583 |
+
|
| 584 |
+
# Wrap model with FSDP
|
| 585 |
+
model = BitTransformerLM(d_model=1024, nhead=16, num_layers=12)
|
| 586 |
+
fsdp_model = wrap_fsdp(
|
| 587 |
+
model,
|
| 588 |
+
sharding_strategy="FULL_SHARD", # or "SHARD_GRAD_OP", "NO_SHARD"
|
| 589 |
+
mixed_precision=True,
|
| 590 |
+
device_id=0
|
| 591 |
+
)
|
| 592 |
+
|
| 593 |
+
# Train with FSDP
|
| 594 |
+
train_loop(
|
| 595 |
+
fsdp_model,
|
| 596 |
+
data,
|
| 597 |
+
epochs=10,
|
| 598 |
+
batch_size=2, # Smaller batch per GPU
|
| 599 |
+
amp=True
|
| 600 |
+
)
|
| 601 |
+
```
|
| 602 |
+
|
| 603 |
+
### Pipeline Parallelism
|
| 604 |
+
|
| 605 |
+
```python
|
| 606 |
+
from bit_transformer.distributed import make_pipeline
|
| 607 |
+
|
| 608 |
+
# Create pipeline parallel model
|
| 609 |
+
pipeline_model = make_pipeline(
|
| 610 |
+
model,
|
| 611 |
+
balance=[2, 2, 2, 2], # Split 8 layers across 4 GPUs
|
| 612 |
+
devices=[0, 1, 2, 3],
|
| 613 |
+
checkpoint="never" # or "always", "except_last"
|
| 614 |
+
)
|
| 615 |
+
|
| 616 |
+
# Pipeline training requires special handling
|
| 617 |
+
# See unified_workflow.py for complete implementation
|
| 618 |
+
```
|
| 619 |
+
|
| 620 |
+
### Multi-GPU Training Script
|
| 621 |
+
|
| 622 |
+
```bash
|
| 623 |
+
# Single node, multiple GPUs
|
| 624 |
+
python -m torch.distributed.launch \
|
| 625 |
+
--nproc_per_node=4 \
|
| 626 |
+
unified_workflow.py \
|
| 627 |
+
--distributed \
|
| 628 |
+
--batch-size 2 \
|
| 629 |
+
--epochs 10
|
| 630 |
+
|
| 631 |
+
# Multiple nodes
|
| 632 |
+
python -m torch.distributed.launch \
|
| 633 |
+
--nnodes=2 \
|
| 634 |
+
--node_rank=0 \
|
| 635 |
+
--master_addr="192.168.1.100" \
|
| 636 |
+
--master_port=29500 \
|
| 637 |
+
--nproc_per_node=4 \
|
| 638 |
+
unified_workflow.py \
|
| 639 |
+
--distributed
|
| 640 |
+
```
|
| 641 |
+
|
| 642 |
+
---
|
| 643 |
+
|
| 644 |
+
## Performance Optimization
|
| 645 |
+
|
| 646 |
+
### Memory Optimization
|
| 647 |
+
|
| 648 |
+
```python
|
| 649 |
+
# Enable all memory optimizations
|
| 650 |
+
model = BitTransformerLM(
|
| 651 |
+
d_model=512,
|
| 652 |
+
nhead=8,
|
| 653 |
+
num_layers=8,
|
| 654 |
+
reversible=True, # Reversible layers save ~50% memory
|
| 655 |
+
use_checkpoint=True, # Gradient checkpointing
|
| 656 |
+
chunk_size=64, # Chunked attention for long sequences
|
| 657 |
+
full_attn_logging=False # Skip full attention reconstruction
|
| 658 |
+
)
|
| 659 |
+
|
| 660 |
+
# Training optimizations
|
| 661 |
+
train_loop(
|
| 662 |
+
model,
|
| 663 |
+
data,
|
| 664 |
+
batch_size=4, # Smaller batches
|
| 665 |
+
accum_steps=8, # Gradient accumulation
|
| 666 |
+
amp=True, # Mixed precision
|
| 667 |
+
compile_model=True # torch.compile
|
| 668 |
+
)
|
| 669 |
+
```
|
| 670 |
+
|
| 671 |
+
### CPU Optimization
|
| 672 |
+
|
| 673 |
+
```python
|
| 674 |
+
from bit_transformer.torch_utils import cpu_autocast
|
| 675 |
+
|
| 676 |
+
# Enable BF16 on CPU
|
| 677 |
+
with cpu_autocast():
|
| 678 |
+
logits, telemetry = model(bits)
|
| 679 |
+
|
| 680 |
+
# Or enable for entire model
|
| 681 |
+
model = BitTransformerLM(use_autocast=True) # Automatically uses CPU BF16
|
| 682 |
+
```
|
| 683 |
+
|
| 684 |
+
### Inference Optimization
|
| 685 |
+
|
| 686 |
+
```python
|
| 687 |
+
# Quantize for inference
|
| 688 |
+
from bit_transformer import quantize_dynamic
|
| 689 |
+
|
| 690 |
+
# Switch to evaluation mode
|
| 691 |
+
model.eval()
|
| 692 |
+
set_dropout(model, 0.0)
|
| 693 |
+
|
| 694 |
+
# Dynamic quantization
|
| 695 |
+
quantized = quantize_dynamic(model, dtype=torch.qint8)
|
| 696 |
+
|
| 697 |
+
# Optimize for inference
|
| 698 |
+
with torch.no_grad():
|
| 699 |
+
logits, _ = quantized(input_bits)
|
| 700 |
+
```
|
| 701 |
+
|
| 702 |
+
### Long Sequence Processing
|
| 703 |
+
|
| 704 |
+
```python
|
| 705 |
+
from bit_transformer.model import infer_long_sequence
|
| 706 |
+
|
| 707 |
+
# Process sequences longer than max_seq_len
|
| 708 |
+
long_text = "Very long text..." * 1000
|
| 709 |
+
bits = text_to_bits(long_text)
|
| 710 |
+
|
| 711 |
+
output = infer_long_sequence(
|
| 712 |
+
model,
|
| 713 |
+
torch.tensor(bits).unsqueeze(0),
|
| 714 |
+
chunk_size=256, # Process in 256-bit chunks
|
| 715 |
+
overlap=32, # 32-bit overlap between chunks
|
| 716 |
+
stride=224 # 224-bit stride (256-32)
|
| 717 |
+
)
|
| 718 |
+
```
|
| 719 |
+
|
| 720 |
+
---
|
| 721 |
+
|
| 722 |
+
## Troubleshooting
|
| 723 |
+
|
| 724 |
+
### Common Issues
|
| 725 |
+
|
| 726 |
+
#### 1. **Memory Errors**
|
| 727 |
+
```
|
| 728 |
+
RuntimeError: CUDA out of memory
|
| 729 |
+
```
|
| 730 |
+
**Solutions:**
|
| 731 |
+
- Enable reversible layers: `reversible=True`
|
| 732 |
+
- Enable gradient checkpointing: `use_checkpoint=True`
|
| 733 |
+
- Reduce batch size or use gradient accumulation
|
| 734 |
+
- Use chunked attention: `chunk_size=64`
|
| 735 |
+
- Enable mixed precision: `amp=True`
|
| 736 |
+
|
| 737 |
+
#### 2. **Tensor Shape Mismatches**
|
| 738 |
+
```
|
| 739 |
+
RuntimeError: view size is not compatible with input tensor's size
|
| 740 |
+
```
|
| 741 |
+
**Solutions:**
|
| 742 |
+
- Always use `.reshape()` instead of `.view()` with BitTransformerLM
|
| 743 |
+
- Check that input sequences are properly formatted (1D for bits)
|
| 744 |
+
- Ensure batch dimensions are consistent
|
| 745 |
+
|
| 746 |
+
#### 3. **Parity Check Failures**
|
| 747 |
+
```
|
| 748 |
+
ValueError: Parity check failed
|
| 749 |
+
```
|
| 750 |
+
**Solutions:**
|
| 751 |
+
- Use `enforce_parity()` to fix parity bits in generated sequences
|
| 752 |
+
- Check that text encoding/decoding is consistent
|
| 753 |
+
- Verify bit sequences have correct 9-bit (8+parity) structure
|
| 754 |
+
|
| 755 |
+
#### 4. **Safety Gate Triggering**
|
| 756 |
+
```
|
| 757 |
+
SafetyError: Output blocked by safety gate
|
| 758 |
+
```
|
| 759 |
+
**Solutions:**
|
| 760 |
+
- Lower safety thresholds: `c_floor=0.2, s_floor=0.4`
|
| 761 |
+
- Increase burn-in period: `burn_in=20`
|
| 762 |
+
- Use retry with diffusion: `safe_sample_with_retry()`
|
| 763 |
+
- Check model training quality
|
| 764 |
+
|
| 765 |
+
### Debug Mode
|
| 766 |
+
|
| 767 |
+
```python
|
| 768 |
+
# Enable detailed logging
|
| 769 |
+
import logging
|
| 770 |
+
logging.basicConfig(level=logging.DEBUG)
|
| 771 |
+
|
| 772 |
+
# Model with debug telemetry
|
| 773 |
+
model = BitTransformerLM(
|
| 774 |
+
d_model=64,
|
| 775 |
+
nhead=4,
|
| 776 |
+
num_layers=2,
|
| 777 |
+
full_attn_logging=True, # Log full attention maps
|
| 778 |
+
chunk_size=None # Disable chunking for debugging
|
| 779 |
+
)
|
| 780 |
+
|
| 781 |
+
# Inspect telemetry
|
| 782 |
+
logits, telemetry = model(input_bits)
|
| 783 |
+
print("Telemetry keys:", list(telemetry.keys()))
|
| 784 |
+
print("Attention maps shape:", [a.shape for a in telemetry['attention_maps']])
|
| 785 |
+
print("Activation stats:", torch.stack(telemetry['activations']).describe())
|
| 786 |
+
```
|
| 787 |
+
|
| 788 |
+
### Performance Profiling
|
| 789 |
+
|
| 790 |
+
```python
|
| 791 |
+
import torch.profiler
|
| 792 |
+
|
| 793 |
+
# Profile training step
|
| 794 |
+
with torch.profiler.profile(
|
| 795 |
+
activities=[
|
| 796 |
+
torch.profiler.ProfilerActivity.CPU,
|
| 797 |
+
torch.profiler.ProfilerActivity.CUDA,
|
| 798 |
+
],
|
| 799 |
+
record_shapes=True,
|
| 800 |
+
with_stack=True,
|
| 801 |
+
) as prof:
|
| 802 |
+
logits, telemetry = model(input_bits)
|
| 803 |
+
loss = F.cross_entropy(logits.reshape(-1, 2), targets.reshape(-1))
|
| 804 |
+
loss.backward()
|
| 805 |
+
|
| 806 |
+
print(prof.key_averages().table(sort_by="cuda_time_total"))
|
| 807 |
+
```
|
| 808 |
+
|
| 809 |
+
---
|
| 810 |
+
|
| 811 |
+
## Best Practices
|
| 812 |
+
|
| 813 |
+
### Model Configuration
|
| 814 |
+
|
| 815 |
+
#### For Experimentation (< 1M parameters)
|
| 816 |
+
```python
|
| 817 |
+
model = BitTransformerLM(
|
| 818 |
+
d_model=64,
|
| 819 |
+
nhead=4,
|
| 820 |
+
num_layers=2,
|
| 821 |
+
dim_feedforward=128,
|
| 822 |
+
max_seq_len=128,
|
| 823 |
+
reversible=False, # Simpler for debugging
|
| 824 |
+
use_checkpoint=False
|
| 825 |
+
)
|
| 826 |
+
```
|
| 827 |
+
|
| 828 |
+
#### For Research (1M-100M parameters)
|
| 829 |
+
```python
|
| 830 |
+
model = BitTransformerLM(
|
| 831 |
+
d_model=256,
|
| 832 |
+
nhead=8,
|
| 833 |
+
num_layers=6,
|
| 834 |
+
dim_feedforward=1024,
|
| 835 |
+
max_seq_len=512,
|
| 836 |
+
reversible=True, # Enable memory efficiency
|
| 837 |
+
use_checkpoint=True,
|
| 838 |
+
chunk_size=128,
|
| 839 |
+
lambda_K=0.05, # Light regularization
|
| 840 |
+
lambda_C=0.05,
|
| 841 |
+
lambda_S=0.05
|
| 842 |
+
)
|
| 843 |
+
```
|
| 844 |
+
|
| 845 |
+
#### For Large-Scale (100M+ parameters)
|
| 846 |
+
```python
|
| 847 |
+
model = BitTransformerLM(
|
| 848 |
+
d_model=1024,
|
| 849 |
+
nhead=16,
|
| 850 |
+
num_layers=20,
|
| 851 |
+
dim_feedforward=4096,
|
| 852 |
+
max_seq_len=2048,
|
| 853 |
+
reversible=True,
|
| 854 |
+
use_checkpoint=True,
|
| 855 |
+
chunk_size=256,
|
| 856 |
+
full_attn_logging=False, # Save memory
|
| 857 |
+
lambda_K=0.1,
|
| 858 |
+
lambda_C=0.1,
|
| 859 |
+
lambda_S=0.1
|
| 860 |
+
)
|
| 861 |
+
```
|
| 862 |
+
|
| 863 |
+
### Training Best Practices
|
| 864 |
+
|
| 865 |
+
1. **Always validate on held-out data** to monitor overfitting
|
| 866 |
+
2. **Use gradient clipping** to prevent training instability
|
| 867 |
+
3. **Monitor telemetry metrics** for signs of model degradation
|
| 868 |
+
4. **Start with smaller models** before scaling up
|
| 869 |
+
5. **Use safety gates** in production deployments
|
| 870 |
+
6. **Enable logging** to track training progress
|
| 871 |
+
7. **Save checkpoints frequently** to prevent loss of progress
|
| 872 |
+
|
| 873 |
+
### Data Preparation
|
| 874 |
+
|
| 875 |
+
```python
|
| 876 |
+
# Good: Clean, well-formatted text
|
| 877 |
+
texts = [
|
| 878 |
+
"The quick brown fox jumps over the lazy dog.",
|
| 879 |
+
"Machine learning is transforming technology.",
|
| 880 |
+
"BitTransformer processes information at the bit level."
|
| 881 |
+
]
|
| 882 |
+
|
| 883 |
+
# Convert to training sequences
|
| 884 |
+
all_bits = []
|
| 885 |
+
for text in texts:
|
| 886 |
+
bits = text_to_bits(text)
|
| 887 |
+
all_bits.extend(bits)
|
| 888 |
+
|
| 889 |
+
# Create overlapping sequences for better learning
|
| 890 |
+
data = torch.tensor(all_bits)
|
| 891 |
+
seq_len = 128
|
| 892 |
+
stride = 64
|
| 893 |
+
sequences = []
|
| 894 |
+
for i in range(0, len(data) - seq_len, stride):
|
| 895 |
+
sequences.append(data[i:i + seq_len])
|
| 896 |
+
|
| 897 |
+
training_data = torch.stack(sequences)
|
| 898 |
+
```
|
| 899 |
+
|
| 900 |
+
### Production Deployment
|
| 901 |
+
|
| 902 |
+
```python
|
| 903 |
+
# Production-ready model setup
|
| 904 |
+
model.eval() # Disable dropout
|
| 905 |
+
set_dropout(model, 0.0)
|
| 906 |
+
|
| 907 |
+
# Enable safety monitoring
|
| 908 |
+
gate = SafetyGate(c_floor=0.3, s_floor=0.5, burn_in=5)
|
| 909 |
+
|
| 910 |
+
# Quantize for efficiency
|
| 911 |
+
production_model = quantize_dynamic(model)
|
| 912 |
+
|
| 913 |
+
# Safe inference with monitoring
|
| 914 |
+
def safe_generate(input_text, max_length=100):
|
| 915 |
+
try:
|
| 916 |
+
return safe_sample_with_retry(
|
| 917 |
+
production_model,
|
| 918 |
+
text_to_bits(input_text),
|
| 919 |
+
max_retries=3
|
| 920 |
+
)
|
| 921 |
+
except Exception as e:
|
| 922 |
+
logging.error(f"Generation failed: {e}")
|
| 923 |
+
return "Error: Unable to generate safe output"
|
| 924 |
+
```
|
| 925 |
+
|
| 926 |
+
---
|
| 927 |
+
|
| 928 |
+
## Getting Help
|
| 929 |
+
|
| 930 |
+
### Documentation Resources
|
| 931 |
+
- **ABOUTME.md**: Project overview and quick start
|
| 932 |
+
- **README.md**: Professional model card and specifications
|
| 933 |
+
- **RESEARCH_STATUS.md**: Current research status and limitations
|
| 934 |
+
- **EMPIRICAL_VALIDATION.md**: Evidence-based analysis of capabilities
|
| 935 |
+
|
| 936 |
+
### Community Support
|
| 937 |
+
- **GitHub Issues**: Report bugs and request features
|
| 938 |
+
- **Discussions**: Ask questions and share experiences
|
| 939 |
+
- **Examples**: Check the `tests/` directory for usage examples
|
| 940 |
+
|
| 941 |
+
### **🤖 Recommended: Use with Claude Code**
|
| 942 |
+
|
| 943 |
+
For the best experience with BitTransformerLM, we recommend using [Claude Code](https://claude.ai/code):
|
| 944 |
+
|
| 945 |
+
- **Interactive Setup**: Get step-by-step guidance for configuration
|
| 946 |
+
- **Real-time Debugging**: Immediate help when things go wrong
|
| 947 |
+
- **Code Generation**: Custom scripts and experiments tailored to your needs
|
| 948 |
+
- **Architecture Explanation**: Deep understanding of bit-native processing
|
| 949 |
+
- **Best Practices**: Learn optimal configurations for your use case
|
| 950 |
+
|
| 951 |
+
Claude Code understands BitTransformerLM's unique architecture and can help you navigate the complexities of bit-level language modeling.
|
| 952 |
+
|
| 953 |
+
---
|
| 954 |
+
|
| 955 |
+
**Remember: BitTransformerLM is experimental research software. Always validate results thoroughly and use safety monitoring in any deployment.**
|
| 956 |
+
|
| 957 |
+
Happy experimenting! 🤖✨
|