Add Comprehensive user handbook
Browse files- USER_GUIDE.md +957 -0
USER_GUIDE.md
ADDED
@@ -0,0 +1,957 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# BitTransformerLM User Guide
|
2 |
+
|
3 |
+
**Version:** 0.1.0 Experimental
|
4 |
+
**Last Updated:** August 2025
|
5 |
+
**Recommended Setup:** Use with [Claude Code](https://claude.ai/code) for optimal experience
|
6 |
+
|
7 |
+
## Table of Contents
|
8 |
+
|
9 |
+
1. [Quick Start](#quick-start)
|
10 |
+
2. [Architecture Overview](#architecture-overview)
|
11 |
+
3. [Core Features](#core-features)
|
12 |
+
4. [Installation & Setup](#installation--setup)
|
13 |
+
5. [Basic Usage Examples](#basic-usage-examples)
|
14 |
+
6. [Advanced Features](#advanced-features)
|
15 |
+
7. [Training Your Own Models](#training-your-own-models)
|
16 |
+
8. [Safety and Monitoring](#safety-and-monitoring)
|
17 |
+
9. [Distributed Training](#distributed-training)
|
18 |
+
10. [Performance Optimization](#performance-optimization)
|
19 |
+
11. [Troubleshooting](#troubleshooting)
|
20 |
+
12. [Best Practices](#best-practices)
|
21 |
+
|
22 |
+
---
|
23 |
+
|
24 |
+
## Quick Start
|
25 |
+
|
26 |
+
BitTransformerLM is an experimental transformer language model that operates directly on binary sequences (bits) rather than tokens. This unique approach enables fine-grained control over information processing and built-in safety monitoring.
|
27 |
+
|
28 |
+
### Minimal Example
|
29 |
+
```python
|
30 |
+
from bit_transformer import BitTransformerLM, example_training_step
|
31 |
+
|
32 |
+
# Run basic example
|
33 |
+
loss, telemetry = example_training_step()
|
34 |
+
print(f"Training loss: {loss}")
|
35 |
+
print(f"Available telemetry: {list(telemetry.keys())}")
|
36 |
+
```
|
37 |
+
|
38 |
+
### Text Processing Example
|
39 |
+
```python
|
40 |
+
from bit_transformer import BitTransformerLM, text_to_bits, bits_to_text
|
41 |
+
|
42 |
+
# Create model
|
43 |
+
model = BitTransformerLM(
|
44 |
+
d_model=128,
|
45 |
+
nhead=4,
|
46 |
+
num_layers=2,
|
47 |
+
dim_feedforward=256,
|
48 |
+
max_seq_len=256
|
49 |
+
)
|
50 |
+
|
51 |
+
# Convert text to bits and process
|
52 |
+
text = "Hello, world!"
|
53 |
+
bits = text_to_bits(text)
|
54 |
+
bit_tensor = torch.tensor(bits).unsqueeze(0)
|
55 |
+
|
56 |
+
# Forward pass
|
57 |
+
logits, telemetry = model(bit_tensor)
|
58 |
+
print(f"Input bits: {len(bits)}")
|
59 |
+
print(f"Output shape: {logits.shape}")
|
60 |
+
print(f"Telemetry metrics: {list(telemetry.keys())}")
|
61 |
+
```
|
62 |
+
|
63 |
+
---
|
64 |
+
|
65 |
+
## Architecture Overview
|
66 |
+
|
67 |
+
### Bit-Native Processing
|
68 |
+
Unlike traditional language models that use token embeddings, BitTransformerLM processes raw binary sequences:
|
69 |
+
|
70 |
+
- **Input**: Text → UTF-8 bytes → Bits with parity protection (9 bits per byte)
|
71 |
+
- **Processing**: Multi-head attention on bit embeddings
|
72 |
+
- **Output**: Probability distribution over next bit (0 or 1)
|
73 |
+
|
74 |
+
### Key Innovations
|
75 |
+
|
76 |
+
#### 1. **Reversible Transformer Layers**
|
77 |
+
- Memory-efficient computation that doesn't store intermediate activations
|
78 |
+
- Enables training of deeper models with same memory footprint
|
79 |
+
- Mathematically reversible operations for gradient computation
|
80 |
+
|
81 |
+
#### 2. **Built-in Safety Telemetry**
|
82 |
+
- **K (Negentropy)**: Measures information content vs random noise
|
83 |
+
- **C (LZ Complexity)**: Proxy for compressibility and pattern complexity
|
84 |
+
- **S (Symbiosis)**: Alignment with reference distributions
|
85 |
+
- Real-time monitoring and safety gates
|
86 |
+
|
87 |
+
#### 3. **Dual-Mode Operation**
|
88 |
+
- **Causal Mode**: Traditional autoregressive generation
|
89 |
+
- **Diffusion Mode**: Bidirectional denoising for higher quality output
|
90 |
+
|
91 |
+
#### 4. **Progressive Scaling**
|
92 |
+
- Dynamic architecture expansion based on validation performance
|
93 |
+
- Automatic addition of layers, width, or context length
|
94 |
+
- Curriculum learning from simple to complex patterns
|
95 |
+
|
96 |
+
---
|
97 |
+
|
98 |
+
## Core Features
|
99 |
+
|
100 |
+
### Text Processing
|
101 |
+
- **Parity-Protected Encoding**: Each byte gets a parity bit for error detection
|
102 |
+
- **UTF-8 Support**: Full Unicode text processing capability
|
103 |
+
- **Bidirectional Processing**: Support for both causal and diffusion modes
|
104 |
+
|
105 |
+
### Safety & Monitoring
|
106 |
+
- **Real-time Telemetry**: K/C/S metrics computed during inference
|
107 |
+
- **Safety Gates**: Automatic blocking of unsafe outputs
|
108 |
+
- **Metric Drift Detection**: Alerts when model behavior changes
|
109 |
+
- **Human-in-the-Loop**: Safe inference with retry mechanisms
|
110 |
+
|
111 |
+
### Memory Efficiency
|
112 |
+
- **Reversible Layers**: Significant memory savings for deep models
|
113 |
+
- **Gradient Checkpointing**: Trade compute for memory in training
|
114 |
+
- **Dynamic Quantization**: Runtime INT8 conversion for inference
|
115 |
+
- **4-bit QAT**: Quantization-aware training for extreme efficiency
|
116 |
+
|
117 |
+
### Advanced Training
|
118 |
+
- **Distributed Training**: FSDP and pipeline parallelism support
|
119 |
+
- **Mixed Precision**: FP16/BF16 optimization with CPU autocast
|
120 |
+
- **Compression Pipeline**: Run-length encoding for efficient storage
|
121 |
+
- **Progressive Curriculum**: Automatic difficulty scaling
|
122 |
+
|
123 |
+
---
|
124 |
+
|
125 |
+
## Installation & Setup
|
126 |
+
|
127 |
+
### Requirements
|
128 |
+
- Python 3.10 or later
|
129 |
+
- PyTorch 2.7.1 or later
|
130 |
+
- CUDA (optional, for GPU acceleration)
|
131 |
+
|
132 |
+
### Installation
|
133 |
+
```bash
|
134 |
+
# Clone repository
|
135 |
+
git clone https://huggingface.co/WCNegentropy/BitTransformerLM
|
136 |
+
cd BitTransformerLM
|
137 |
+
|
138 |
+
# Install dependencies
|
139 |
+
pip install -r requirements.txt
|
140 |
+
|
141 |
+
# For GPU support (optional)
|
142 |
+
pip install --extra-index-url https://download.pytorch.org/whl/cu118 torch==2.7.1+cu118
|
143 |
+
```
|
144 |
+
|
145 |
+
### Quick Test
|
146 |
+
```bash
|
147 |
+
# Run basic example
|
148 |
+
python example.py
|
149 |
+
|
150 |
+
# Expected output:
|
151 |
+
# Training loss: [some value]
|
152 |
+
# Available telemetry: ['activations', 'attention_maps', ...]
|
153 |
+
```
|
154 |
+
|
155 |
+
### **🤖 Recommended: Setup with Claude Code**
|
156 |
+
|
157 |
+
For the best experience, we recommend using [Claude Code](https://claude.ai/code) to set up and work with BitTransformerLM:
|
158 |
+
|
159 |
+
1. **Open Claude Code** and navigate to your project directory
|
160 |
+
2. **Clone the repository**: Claude Code can help with git operations and dependency management
|
161 |
+
3. **Interactive Setup**: Claude Code can guide you through configuration options and explain parameters
|
162 |
+
4. **Real-time Assistance**: Get help with model architecture, training parameters, and debugging
|
163 |
+
5. **Code Generation**: Generate custom training scripts and experiments with AI assistance
|
164 |
+
|
165 |
+
Claude Code provides contextual understanding of BitTransformerLM's unique architecture and can help you avoid common pitfalls when working with bit-native processing.
|
166 |
+
|
167 |
+
---
|
168 |
+
|
169 |
+
## Basic Usage Examples
|
170 |
+
|
171 |
+
### 1. Creating Models
|
172 |
+
|
173 |
+
```python
|
174 |
+
from bit_transformer import BitTransformerLM
|
175 |
+
|
176 |
+
# Small model for experimentation
|
177 |
+
small_model = BitTransformerLM(
|
178 |
+
d_model=64, # Embedding dimension
|
179 |
+
nhead=4, # Number of attention heads
|
180 |
+
num_layers=2, # Number of transformer layers
|
181 |
+
dim_feedforward=128, # Feedforward dimension
|
182 |
+
max_seq_len=128, # Maximum sequence length
|
183 |
+
reversible=True, # Use memory-efficient reversible layers
|
184 |
+
use_checkpoint=True # Enable gradient checkpointing
|
185 |
+
)
|
186 |
+
|
187 |
+
# Medium model for research
|
188 |
+
medium_model = BitTransformerLM(
|
189 |
+
d_model=512,
|
190 |
+
nhead=8,
|
191 |
+
num_layers=8,
|
192 |
+
dim_feedforward=2048,
|
193 |
+
max_seq_len=512,
|
194 |
+
reversible=True,
|
195 |
+
use_checkpoint=True,
|
196 |
+
chunk_size=64, # Chunked attention for long sequences
|
197 |
+
lambda_K=0.1, # Negentropy regularization weight
|
198 |
+
lambda_C=0.1, # Complexity regularization weight
|
199 |
+
lambda_S=0.1 # Symbiosis regularization weight
|
200 |
+
)
|
201 |
+
```
|
202 |
+
|
203 |
+
### 2. Text Generation
|
204 |
+
|
205 |
+
```python
|
206 |
+
from bit_transformer.bit_io import sample_text
|
207 |
+
|
208 |
+
# Generate text from prompt
|
209 |
+
prompt = "The future of AI is"
|
210 |
+
generated = sample_text(
|
211 |
+
model,
|
212 |
+
prompt=prompt,
|
213 |
+
max_new_tokens=20, # Generate ~20 new characters
|
214 |
+
temperature=0.8, # Sampling temperature
|
215 |
+
top_p=0.9 # Nucleus sampling
|
216 |
+
)
|
217 |
+
print(f"Generated: {generated}")
|
218 |
+
```
|
219 |
+
|
220 |
+
### 3. Safe Inference
|
221 |
+
|
222 |
+
```python
|
223 |
+
from bit_transformer import hil_safe_inference, text_to_bits
|
224 |
+
import torch
|
225 |
+
|
226 |
+
# Convert text to bits
|
227 |
+
text = "Hello, world!"
|
228 |
+
bits = torch.tensor(text_to_bits(text)).unsqueeze(0)
|
229 |
+
|
230 |
+
# Safe inference with telemetry monitoring
|
231 |
+
try:
|
232 |
+
output_bits, telemetry = hil_safe_inference(
|
233 |
+
model,
|
234 |
+
bits,
|
235 |
+
c_floor=0.3, # Minimum complexity threshold
|
236 |
+
s_floor=0.5, # Minimum symbiosis threshold
|
237 |
+
strict=True # Throw error if thresholds not met
|
238 |
+
)
|
239 |
+
print("✅ Safe inference completed")
|
240 |
+
print(f"K (Negentropy): {telemetry.get('negentropy_logits', 'N/A')}")
|
241 |
+
print(f"C (Complexity): {telemetry.get('lz_complexity_logits', 'N/A')}")
|
242 |
+
print(f"S (Symbiosis): {telemetry.get('symbiosis_score', 'N/A')}")
|
243 |
+
except Exception as e:
|
244 |
+
print(f"⚠️ Safety check failed: {e}")
|
245 |
+
```
|
246 |
+
|
247 |
+
### 4. Interactive Dashboard
|
248 |
+
|
249 |
+
```python
|
250 |
+
# Launch the interactive dashboard
|
251 |
+
python unified_workflow.py --dashboard
|
252 |
+
|
253 |
+
# Or programmatically
|
254 |
+
from bit_transformer.dashboard_app import run_dashboard
|
255 |
+
run_dashboard(host="localhost", port=5000)
|
256 |
+
```
|
257 |
+
|
258 |
+
The dashboard provides:
|
259 |
+
- Real-time training monitoring
|
260 |
+
- Telemetry visualization
|
261 |
+
- Model configuration controls
|
262 |
+
- HuggingFace checkpoint management
|
263 |
+
- Safe inference testing interface
|
264 |
+
|
265 |
+
---
|
266 |
+
|
267 |
+
## Advanced Features
|
268 |
+
|
269 |
+
### 1. Diffusion Mode Training
|
270 |
+
|
271 |
+
Diffusion mode enables bidirectional processing for higher quality generation:
|
272 |
+
|
273 |
+
```python
|
274 |
+
# Train with diffusion mode
|
275 |
+
python unified_workflow.py --diffusion --diffusion-steps 8 --dataset-size 32
|
276 |
+
|
277 |
+
# Different noise schedules
|
278 |
+
python unified_workflow.py --diffusion --noise-schedule cosine --diffusion-steps 16
|
279 |
+
|
280 |
+
# Diffusion curriculum (noise decay over epochs)
|
281 |
+
python unified_workflow.py --diffusion --diffusion-curriculum
|
282 |
+
```
|
283 |
+
|
284 |
+
**Diffusion Parameters:**
|
285 |
+
- `--diffusion-steps`: Number of denoising steps (higher = better quality)
|
286 |
+
- `--noise-schedule`: `linear`, `cosine`, or `exp` noise decay
|
287 |
+
- `--diffusion-curriculum`: Gradually reduce noise over training epochs
|
288 |
+
|
289 |
+
### 2. Progressive Scaling
|
290 |
+
|
291 |
+
Enable automatic model growth based on performance:
|
292 |
+
|
293 |
+
```python
|
294 |
+
from bit_transformer.training import train_loop
|
295 |
+
from bit_transformer.scale import expand_model
|
296 |
+
|
297 |
+
# Training loop with automatic scaling
|
298 |
+
model = BitTransformerLM(d_model=64, nhead=4, num_layers=2, dim_feedforward=128)
|
299 |
+
train_data = torch.randint(0, 2, (1000, 64))
|
300 |
+
|
301 |
+
# Train with progressive scaling
|
302 |
+
train_loop(
|
303 |
+
model,
|
304 |
+
train_data,
|
305 |
+
epochs=10,
|
306 |
+
batch_size=8,
|
307 |
+
# Progressive scaling will automatically trigger when validation loss plateaus
|
308 |
+
)
|
309 |
+
|
310 |
+
# Manual model expansion
|
311 |
+
expanded_model = expand_model(model, strategy="depth") # Add layers
|
312 |
+
expanded_model = expand_model(model, strategy="width") # Increase width
|
313 |
+
expanded_model = expand_model(model, strategy="context") # Extend context
|
314 |
+
```
|
315 |
+
|
316 |
+
### 3. Compression Pipeline
|
317 |
+
|
318 |
+
BitTransformerLM includes run-length encoding for efficient data storage:
|
319 |
+
|
320 |
+
```python
|
321 |
+
from bit_transformer import compress_bits, decompress_bits
|
322 |
+
|
323 |
+
# Compress bit sequences
|
324 |
+
original_bits = torch.tensor([0, 0, 0, 1, 1, 0, 1, 1, 1])
|
325 |
+
compressed = compress_bits(original_bits)
|
326 |
+
decompressed = decompress_bits(compressed)
|
327 |
+
|
328 |
+
print(f"Original: {original_bits}")
|
329 |
+
print(f"Compressed: {compressed}")
|
330 |
+
print(f"Decompressed: {decompressed}")
|
331 |
+
print(f"Compression ratio: {len(original_bits) / len(compressed):.2f}")
|
332 |
+
|
333 |
+
# Use compression in training
|
334 |
+
train_loop(
|
335 |
+
model,
|
336 |
+
data,
|
337 |
+
compress_prob=0.5, # 50% of training uses compressed data
|
338 |
+
compress_warmup=100 # Start compression after 100 steps
|
339 |
+
)
|
340 |
+
```
|
341 |
+
|
342 |
+
### 4. Quantization and Optimization
|
343 |
+
|
344 |
+
```python
|
345 |
+
from bit_transformer import quantize_dynamic, prepare_qat_fx, convert_qat_fx
|
346 |
+
|
347 |
+
# Dynamic quantization for inference
|
348 |
+
quantized_model = quantize_dynamic(model, dtype=torch.qint8)
|
349 |
+
|
350 |
+
# 4-bit quantization-aware training
|
351 |
+
qat_model = prepare_qat_fx(model)
|
352 |
+
# ... train qat_model ...
|
353 |
+
final_model = convert_qat_fx(qat_model)
|
354 |
+
|
355 |
+
# Enable mixed precision and compilation
|
356 |
+
train_loop(
|
357 |
+
model,
|
358 |
+
data,
|
359 |
+
amp=True, # Enable automatic mixed precision
|
360 |
+
compile_model=True # Use torch.compile for speedup
|
361 |
+
)
|
362 |
+
```
|
363 |
+
|
364 |
+
---
|
365 |
+
|
366 |
+
## Training Your Own Models
|
367 |
+
|
368 |
+
### Basic Training Script
|
369 |
+
|
370 |
+
```python
|
371 |
+
import torch
|
372 |
+
from bit_transformer import BitTransformerLM, train_loop, configure_optimizer
|
373 |
+
from bit_transformer.bit_io import text_to_bits
|
374 |
+
|
375 |
+
# Prepare training data
|
376 |
+
texts = ["Hello world", "How are you?", "BitTransformer is working!"]
|
377 |
+
all_bits = []
|
378 |
+
for text in texts:
|
379 |
+
bits = text_to_bits(text)
|
380 |
+
all_bits.extend(bits)
|
381 |
+
|
382 |
+
# Convert to tensor and create sequences
|
383 |
+
data = torch.tensor(all_bits)
|
384 |
+
sequences = data.unfold(0, 64, 32) # 64-bit sequences with 32-bit stride
|
385 |
+
|
386 |
+
# Create model
|
387 |
+
model = BitTransformerLM(
|
388 |
+
d_model=128,
|
389 |
+
nhead=8,
|
390 |
+
num_layers=4,
|
391 |
+
dim_feedforward=512,
|
392 |
+
max_seq_len=64,
|
393 |
+
reversible=True
|
394 |
+
)
|
395 |
+
|
396 |
+
# Configure optimizer
|
397 |
+
optimizer = configure_optimizer(model, lr=0.001, weight_decay=0.01)
|
398 |
+
|
399 |
+
# Training loop
|
400 |
+
train_loop(
|
401 |
+
model,
|
402 |
+
sequences,
|
403 |
+
epochs=10,
|
404 |
+
batch_size=4,
|
405 |
+
optimizer=optimizer,
|
406 |
+
amp=True, # Mixed precision
|
407 |
+
log=True # Enable logging
|
408 |
+
)
|
409 |
+
```
|
410 |
+
|
411 |
+
### Advanced Training Configuration
|
412 |
+
|
413 |
+
```python
|
414 |
+
# Advanced training with all features enabled
|
415 |
+
train_loop(
|
416 |
+
model,
|
417 |
+
data,
|
418 |
+
epochs=20,
|
419 |
+
batch_size=8,
|
420 |
+
accum_steps=4, # Gradient accumulation
|
421 |
+
amp=True, # Mixed precision
|
422 |
+
compile_model=True, # torch.compile optimization
|
423 |
+
|
424 |
+
# Compression settings
|
425 |
+
compress_prob=0.3, # 30% compression probability
|
426 |
+
compress_warmup=50, # Start compression after 50 steps
|
427 |
+
|
428 |
+
# Diffusion settings
|
429 |
+
diffusion=True, # Enable diffusion mode
|
430 |
+
diffusion_curriculum=True, # Decay noise over epochs
|
431 |
+
|
432 |
+
# Direct bit training
|
433 |
+
direct_prob=0.1, # 10% direct bit prediction
|
434 |
+
|
435 |
+
# Logging
|
436 |
+
log=True # Enable detailed logging
|
437 |
+
)
|
438 |
+
```
|
439 |
+
|
440 |
+
### Custom Training Loop
|
441 |
+
|
442 |
+
```python
|
443 |
+
import torch.nn.functional as F
|
444 |
+
from bit_transformer.utils import set_dropout
|
445 |
+
|
446 |
+
# Manual training loop for full control
|
447 |
+
model.train()
|
448 |
+
set_dropout(model, 0.1) # Enable dropout for training
|
449 |
+
|
450 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr=0.001)
|
451 |
+
criterion = F.cross_entropy
|
452 |
+
|
453 |
+
for epoch in range(10):
|
454 |
+
total_loss = 0
|
455 |
+
for batch in data_loader:
|
456 |
+
optimizer.zero_grad()
|
457 |
+
|
458 |
+
# Forward pass
|
459 |
+
logits, telemetry = model(batch)
|
460 |
+
|
461 |
+
# Compute loss
|
462 |
+
if logits.dim() == 3: # (batch, seq, 2)
|
463 |
+
targets = batch[:, 1:] # Next bit prediction
|
464 |
+
logits = logits[:, :-1] # Remove last prediction
|
465 |
+
loss = criterion(logits.reshape(-1, 2), targets.reshape(-1))
|
466 |
+
else:
|
467 |
+
loss = criterion(logits, batch)
|
468 |
+
|
469 |
+
# Add telemetry regularization
|
470 |
+
if model.lambda_K > 0:
|
471 |
+
loss += model.lambda_K * (1 - telemetry.get('negentropy_logits', 0))
|
472 |
+
if model.lambda_C > 0:
|
473 |
+
loss += model.lambda_C * (1 - telemetry.get('lz_complexity_logits', 0))
|
474 |
+
|
475 |
+
# Backward pass
|
476 |
+
loss.backward()
|
477 |
+
|
478 |
+
# Gradient clipping
|
479 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
480 |
+
|
481 |
+
optimizer.step()
|
482 |
+
total_loss += loss.item()
|
483 |
+
|
484 |
+
# Safety check
|
485 |
+
if telemetry.get('symbiosis_score', 1.0) < 0.3:
|
486 |
+
print("⚠️ Low symbiosis score detected")
|
487 |
+
|
488 |
+
print(f"Epoch {epoch}: Average loss = {total_loss / len(data_loader):.4f}")
|
489 |
+
```
|
490 |
+
|
491 |
+
---
|
492 |
+
|
493 |
+
## Safety and Monitoring
|
494 |
+
|
495 |
+
### Telemetry Metrics
|
496 |
+
|
497 |
+
BitTransformerLM provides three key safety metrics:
|
498 |
+
|
499 |
+
#### K (Negentropy) - Information Content
|
500 |
+
- **Range**: 0-1 (0 = random noise, 1 = perfectly ordered)
|
501 |
+
- **Purpose**: Measures departure from randomness
|
502 |
+
- **Interpretation**:
|
503 |
+
- Very low K (< 0.1): Output is noise-like
|
504 |
+
- Moderate K (0.3-0.7): Structured but varied output
|
505 |
+
- Very high K (> 0.9): Repetitive or overly structured
|
506 |
+
|
507 |
+
#### C (LZ Complexity) - Pattern Complexity
|
508 |
+
- **Range**: 0-1 (higher = more complex patterns)
|
509 |
+
- **Purpose**: Proxy for Lempel-Ziv compressibility
|
510 |
+
- **Interpretation**:
|
511 |
+
- Low C (< 0.3): Highly repetitive patterns
|
512 |
+
- Moderate C (0.3-0.7): Balanced complexity
|
513 |
+
- High C (> 0.8): Complex, varied patterns
|
514 |
+
|
515 |
+
#### S (Symbiosis) - Distribution Alignment
|
516 |
+
- **Range**: 0-1 (higher = better alignment)
|
517 |
+
- **Purpose**: Agreement with reference distributions via KL divergence
|
518 |
+
- **Interpretation**:
|
519 |
+
- Low S (< 0.3): Poor alignment with expected patterns
|
520 |
+
- Moderate S (0.5-0.8): Good alignment
|
521 |
+
- High S (> 0.8): Excellent alignment
|
522 |
+
|
523 |
+
### Safety Gates
|
524 |
+
|
525 |
+
```python
|
526 |
+
from bit_transformer.safety import SafetyGate, safe_sample_with_retry
|
527 |
+
|
528 |
+
# Configure safety gate
|
529 |
+
gate = SafetyGate(
|
530 |
+
c_floor=0.3, # Minimum complexity
|
531 |
+
s_floor=0.5, # Minimum symbiosis
|
532 |
+
decay=0.9, # EMA decay factor
|
533 |
+
burn_in=10 # Steps before gating starts
|
534 |
+
)
|
535 |
+
|
536 |
+
# Check if output should be blocked
|
537 |
+
should_block = gate.should_trigger(c_val=0.2, s_val=0.4) # True - below thresholds
|
538 |
+
|
539 |
+
# Safe sampling with automatic retry
|
540 |
+
output = safe_sample_with_retry(
|
541 |
+
model,
|
542 |
+
input_bits,
|
543 |
+
max_retries=3,
|
544 |
+
retry_strategy="diffusion" # Try diffusion mode on failure
|
545 |
+
)
|
546 |
+
```
|
547 |
+
|
548 |
+
### Metric Drift Detection
|
549 |
+
|
550 |
+
```python
|
551 |
+
from bit_transformer.telemetry import detect_metric_drift
|
552 |
+
|
553 |
+
# Monitor metric stability over time
|
554 |
+
metrics_history = [
|
555 |
+
{"K": 0.5, "C": 0.6, "S": 0.7},
|
556 |
+
{"K": 0.52, "C": 0.58, "S": 0.69},
|
557 |
+
{"K": 0.8, "C": 0.9, "S": 0.4}, # Drift detected!
|
558 |
+
# ... more metrics
|
559 |
+
]
|
560 |
+
|
561 |
+
drift_detected = detect_metric_drift(
|
562 |
+
metrics_history,
|
563 |
+
window=10, # Look back 10 steps
|
564 |
+
threshold=0.2 # Alert if change > 0.2
|
565 |
+
)
|
566 |
+
|
567 |
+
if drift_detected:
|
568 |
+
print("⚠️ Model behavior drift detected!")
|
569 |
+
```
|
570 |
+
|
571 |
+
---
|
572 |
+
|
573 |
+
## Distributed Training
|
574 |
+
|
575 |
+
### FSDP (Fully Sharded Data Parallel)
|
576 |
+
|
577 |
+
```python
|
578 |
+
from bit_transformer.distributed import wrap_fsdp, setup_distributed
|
579 |
+
import torch.distributed as dist
|
580 |
+
|
581 |
+
# Initialize distributed training
|
582 |
+
setup_distributed(rank=0, world_size=4)
|
583 |
+
|
584 |
+
# Wrap model with FSDP
|
585 |
+
model = BitTransformerLM(d_model=1024, nhead=16, num_layers=12)
|
586 |
+
fsdp_model = wrap_fsdp(
|
587 |
+
model,
|
588 |
+
sharding_strategy="FULL_SHARD", # or "SHARD_GRAD_OP", "NO_SHARD"
|
589 |
+
mixed_precision=True,
|
590 |
+
device_id=0
|
591 |
+
)
|
592 |
+
|
593 |
+
# Train with FSDP
|
594 |
+
train_loop(
|
595 |
+
fsdp_model,
|
596 |
+
data,
|
597 |
+
epochs=10,
|
598 |
+
batch_size=2, # Smaller batch per GPU
|
599 |
+
amp=True
|
600 |
+
)
|
601 |
+
```
|
602 |
+
|
603 |
+
### Pipeline Parallelism
|
604 |
+
|
605 |
+
```python
|
606 |
+
from bit_transformer.distributed import make_pipeline
|
607 |
+
|
608 |
+
# Create pipeline parallel model
|
609 |
+
pipeline_model = make_pipeline(
|
610 |
+
model,
|
611 |
+
balance=[2, 2, 2, 2], # Split 8 layers across 4 GPUs
|
612 |
+
devices=[0, 1, 2, 3],
|
613 |
+
checkpoint="never" # or "always", "except_last"
|
614 |
+
)
|
615 |
+
|
616 |
+
# Pipeline training requires special handling
|
617 |
+
# See unified_workflow.py for complete implementation
|
618 |
+
```
|
619 |
+
|
620 |
+
### Multi-GPU Training Script
|
621 |
+
|
622 |
+
```bash
|
623 |
+
# Single node, multiple GPUs
|
624 |
+
python -m torch.distributed.launch \
|
625 |
+
--nproc_per_node=4 \
|
626 |
+
unified_workflow.py \
|
627 |
+
--distributed \
|
628 |
+
--batch-size 2 \
|
629 |
+
--epochs 10
|
630 |
+
|
631 |
+
# Multiple nodes
|
632 |
+
python -m torch.distributed.launch \
|
633 |
+
--nnodes=2 \
|
634 |
+
--node_rank=0 \
|
635 |
+
--master_addr="192.168.1.100" \
|
636 |
+
--master_port=29500 \
|
637 |
+
--nproc_per_node=4 \
|
638 |
+
unified_workflow.py \
|
639 |
+
--distributed
|
640 |
+
```
|
641 |
+
|
642 |
+
---
|
643 |
+
|
644 |
+
## Performance Optimization
|
645 |
+
|
646 |
+
### Memory Optimization
|
647 |
+
|
648 |
+
```python
|
649 |
+
# Enable all memory optimizations
|
650 |
+
model = BitTransformerLM(
|
651 |
+
d_model=512,
|
652 |
+
nhead=8,
|
653 |
+
num_layers=8,
|
654 |
+
reversible=True, # Reversible layers save ~50% memory
|
655 |
+
use_checkpoint=True, # Gradient checkpointing
|
656 |
+
chunk_size=64, # Chunked attention for long sequences
|
657 |
+
full_attn_logging=False # Skip full attention reconstruction
|
658 |
+
)
|
659 |
+
|
660 |
+
# Training optimizations
|
661 |
+
train_loop(
|
662 |
+
model,
|
663 |
+
data,
|
664 |
+
batch_size=4, # Smaller batches
|
665 |
+
accum_steps=8, # Gradient accumulation
|
666 |
+
amp=True, # Mixed precision
|
667 |
+
compile_model=True # torch.compile
|
668 |
+
)
|
669 |
+
```
|
670 |
+
|
671 |
+
### CPU Optimization
|
672 |
+
|
673 |
+
```python
|
674 |
+
from bit_transformer.torch_utils import cpu_autocast
|
675 |
+
|
676 |
+
# Enable BF16 on CPU
|
677 |
+
with cpu_autocast():
|
678 |
+
logits, telemetry = model(bits)
|
679 |
+
|
680 |
+
# Or enable for entire model
|
681 |
+
model = BitTransformerLM(use_autocast=True) # Automatically uses CPU BF16
|
682 |
+
```
|
683 |
+
|
684 |
+
### Inference Optimization
|
685 |
+
|
686 |
+
```python
|
687 |
+
# Quantize for inference
|
688 |
+
from bit_transformer import quantize_dynamic
|
689 |
+
|
690 |
+
# Switch to evaluation mode
|
691 |
+
model.eval()
|
692 |
+
set_dropout(model, 0.0)
|
693 |
+
|
694 |
+
# Dynamic quantization
|
695 |
+
quantized = quantize_dynamic(model, dtype=torch.qint8)
|
696 |
+
|
697 |
+
# Optimize for inference
|
698 |
+
with torch.no_grad():
|
699 |
+
logits, _ = quantized(input_bits)
|
700 |
+
```
|
701 |
+
|
702 |
+
### Long Sequence Processing
|
703 |
+
|
704 |
+
```python
|
705 |
+
from bit_transformer.model import infer_long_sequence
|
706 |
+
|
707 |
+
# Process sequences longer than max_seq_len
|
708 |
+
long_text = "Very long text..." * 1000
|
709 |
+
bits = text_to_bits(long_text)
|
710 |
+
|
711 |
+
output = infer_long_sequence(
|
712 |
+
model,
|
713 |
+
torch.tensor(bits).unsqueeze(0),
|
714 |
+
chunk_size=256, # Process in 256-bit chunks
|
715 |
+
overlap=32, # 32-bit overlap between chunks
|
716 |
+
stride=224 # 224-bit stride (256-32)
|
717 |
+
)
|
718 |
+
```
|
719 |
+
|
720 |
+
---
|
721 |
+
|
722 |
+
## Troubleshooting
|
723 |
+
|
724 |
+
### Common Issues
|
725 |
+
|
726 |
+
#### 1. **Memory Errors**
|
727 |
+
```
|
728 |
+
RuntimeError: CUDA out of memory
|
729 |
+
```
|
730 |
+
**Solutions:**
|
731 |
+
- Enable reversible layers: `reversible=True`
|
732 |
+
- Enable gradient checkpointing: `use_checkpoint=True`
|
733 |
+
- Reduce batch size or use gradient accumulation
|
734 |
+
- Use chunked attention: `chunk_size=64`
|
735 |
+
- Enable mixed precision: `amp=True`
|
736 |
+
|
737 |
+
#### 2. **Tensor Shape Mismatches**
|
738 |
+
```
|
739 |
+
RuntimeError: view size is not compatible with input tensor's size
|
740 |
+
```
|
741 |
+
**Solutions:**
|
742 |
+
- Always use `.reshape()` instead of `.view()` with BitTransformerLM
|
743 |
+
- Check that input sequences are properly formatted (1D for bits)
|
744 |
+
- Ensure batch dimensions are consistent
|
745 |
+
|
746 |
+
#### 3. **Parity Check Failures**
|
747 |
+
```
|
748 |
+
ValueError: Parity check failed
|
749 |
+
```
|
750 |
+
**Solutions:**
|
751 |
+
- Use `enforce_parity()` to fix parity bits in generated sequences
|
752 |
+
- Check that text encoding/decoding is consistent
|
753 |
+
- Verify bit sequences have correct 9-bit (8+parity) structure
|
754 |
+
|
755 |
+
#### 4. **Safety Gate Triggering**
|
756 |
+
```
|
757 |
+
SafetyError: Output blocked by safety gate
|
758 |
+
```
|
759 |
+
**Solutions:**
|
760 |
+
- Lower safety thresholds: `c_floor=0.2, s_floor=0.4`
|
761 |
+
- Increase burn-in period: `burn_in=20`
|
762 |
+
- Use retry with diffusion: `safe_sample_with_retry()`
|
763 |
+
- Check model training quality
|
764 |
+
|
765 |
+
### Debug Mode
|
766 |
+
|
767 |
+
```python
|
768 |
+
# Enable detailed logging
|
769 |
+
import logging
|
770 |
+
logging.basicConfig(level=logging.DEBUG)
|
771 |
+
|
772 |
+
# Model with debug telemetry
|
773 |
+
model = BitTransformerLM(
|
774 |
+
d_model=64,
|
775 |
+
nhead=4,
|
776 |
+
num_layers=2,
|
777 |
+
full_attn_logging=True, # Log full attention maps
|
778 |
+
chunk_size=None # Disable chunking for debugging
|
779 |
+
)
|
780 |
+
|
781 |
+
# Inspect telemetry
|
782 |
+
logits, telemetry = model(input_bits)
|
783 |
+
print("Telemetry keys:", list(telemetry.keys()))
|
784 |
+
print("Attention maps shape:", [a.shape for a in telemetry['attention_maps']])
|
785 |
+
print("Activation stats:", torch.stack(telemetry['activations']).describe())
|
786 |
+
```
|
787 |
+
|
788 |
+
### Performance Profiling
|
789 |
+
|
790 |
+
```python
|
791 |
+
import torch.profiler
|
792 |
+
|
793 |
+
# Profile training step
|
794 |
+
with torch.profiler.profile(
|
795 |
+
activities=[
|
796 |
+
torch.profiler.ProfilerActivity.CPU,
|
797 |
+
torch.profiler.ProfilerActivity.CUDA,
|
798 |
+
],
|
799 |
+
record_shapes=True,
|
800 |
+
with_stack=True,
|
801 |
+
) as prof:
|
802 |
+
logits, telemetry = model(input_bits)
|
803 |
+
loss = F.cross_entropy(logits.reshape(-1, 2), targets.reshape(-1))
|
804 |
+
loss.backward()
|
805 |
+
|
806 |
+
print(prof.key_averages().table(sort_by="cuda_time_total"))
|
807 |
+
```
|
808 |
+
|
809 |
+
---
|
810 |
+
|
811 |
+
## Best Practices
|
812 |
+
|
813 |
+
### Model Configuration
|
814 |
+
|
815 |
+
#### For Experimentation (< 1M parameters)
|
816 |
+
```python
|
817 |
+
model = BitTransformerLM(
|
818 |
+
d_model=64,
|
819 |
+
nhead=4,
|
820 |
+
num_layers=2,
|
821 |
+
dim_feedforward=128,
|
822 |
+
max_seq_len=128,
|
823 |
+
reversible=False, # Simpler for debugging
|
824 |
+
use_checkpoint=False
|
825 |
+
)
|
826 |
+
```
|
827 |
+
|
828 |
+
#### For Research (1M-100M parameters)
|
829 |
+
```python
|
830 |
+
model = BitTransformerLM(
|
831 |
+
d_model=256,
|
832 |
+
nhead=8,
|
833 |
+
num_layers=6,
|
834 |
+
dim_feedforward=1024,
|
835 |
+
max_seq_len=512,
|
836 |
+
reversible=True, # Enable memory efficiency
|
837 |
+
use_checkpoint=True,
|
838 |
+
chunk_size=128,
|
839 |
+
lambda_K=0.05, # Light regularization
|
840 |
+
lambda_C=0.05,
|
841 |
+
lambda_S=0.05
|
842 |
+
)
|
843 |
+
```
|
844 |
+
|
845 |
+
#### For Large-Scale (100M+ parameters)
|
846 |
+
```python
|
847 |
+
model = BitTransformerLM(
|
848 |
+
d_model=1024,
|
849 |
+
nhead=16,
|
850 |
+
num_layers=20,
|
851 |
+
dim_feedforward=4096,
|
852 |
+
max_seq_len=2048,
|
853 |
+
reversible=True,
|
854 |
+
use_checkpoint=True,
|
855 |
+
chunk_size=256,
|
856 |
+
full_attn_logging=False, # Save memory
|
857 |
+
lambda_K=0.1,
|
858 |
+
lambda_C=0.1,
|
859 |
+
lambda_S=0.1
|
860 |
+
)
|
861 |
+
```
|
862 |
+
|
863 |
+
### Training Best Practices
|
864 |
+
|
865 |
+
1. **Always validate on held-out data** to monitor overfitting
|
866 |
+
2. **Use gradient clipping** to prevent training instability
|
867 |
+
3. **Monitor telemetry metrics** for signs of model degradation
|
868 |
+
4. **Start with smaller models** before scaling up
|
869 |
+
5. **Use safety gates** in production deployments
|
870 |
+
6. **Enable logging** to track training progress
|
871 |
+
7. **Save checkpoints frequently** to prevent loss of progress
|
872 |
+
|
873 |
+
### Data Preparation
|
874 |
+
|
875 |
+
```python
|
876 |
+
# Good: Clean, well-formatted text
|
877 |
+
texts = [
|
878 |
+
"The quick brown fox jumps over the lazy dog.",
|
879 |
+
"Machine learning is transforming technology.",
|
880 |
+
"BitTransformer processes information at the bit level."
|
881 |
+
]
|
882 |
+
|
883 |
+
# Convert to training sequences
|
884 |
+
all_bits = []
|
885 |
+
for text in texts:
|
886 |
+
bits = text_to_bits(text)
|
887 |
+
all_bits.extend(bits)
|
888 |
+
|
889 |
+
# Create overlapping sequences for better learning
|
890 |
+
data = torch.tensor(all_bits)
|
891 |
+
seq_len = 128
|
892 |
+
stride = 64
|
893 |
+
sequences = []
|
894 |
+
for i in range(0, len(data) - seq_len, stride):
|
895 |
+
sequences.append(data[i:i + seq_len])
|
896 |
+
|
897 |
+
training_data = torch.stack(sequences)
|
898 |
+
```
|
899 |
+
|
900 |
+
### Production Deployment
|
901 |
+
|
902 |
+
```python
|
903 |
+
# Production-ready model setup
|
904 |
+
model.eval() # Disable dropout
|
905 |
+
set_dropout(model, 0.0)
|
906 |
+
|
907 |
+
# Enable safety monitoring
|
908 |
+
gate = SafetyGate(c_floor=0.3, s_floor=0.5, burn_in=5)
|
909 |
+
|
910 |
+
# Quantize for efficiency
|
911 |
+
production_model = quantize_dynamic(model)
|
912 |
+
|
913 |
+
# Safe inference with monitoring
|
914 |
+
def safe_generate(input_text, max_length=100):
|
915 |
+
try:
|
916 |
+
return safe_sample_with_retry(
|
917 |
+
production_model,
|
918 |
+
text_to_bits(input_text),
|
919 |
+
max_retries=3
|
920 |
+
)
|
921 |
+
except Exception as e:
|
922 |
+
logging.error(f"Generation failed: {e}")
|
923 |
+
return "Error: Unable to generate safe output"
|
924 |
+
```
|
925 |
+
|
926 |
+
---
|
927 |
+
|
928 |
+
## Getting Help
|
929 |
+
|
930 |
+
### Documentation Resources
|
931 |
+
- **ABOUTME.md**: Project overview and quick start
|
932 |
+
- **README.md**: Professional model card and specifications
|
933 |
+
- **RESEARCH_STATUS.md**: Current research status and limitations
|
934 |
+
- **EMPIRICAL_VALIDATION.md**: Evidence-based analysis of capabilities
|
935 |
+
|
936 |
+
### Community Support
|
937 |
+
- **GitHub Issues**: Report bugs and request features
|
938 |
+
- **Discussions**: Ask questions and share experiences
|
939 |
+
- **Examples**: Check the `tests/` directory for usage examples
|
940 |
+
|
941 |
+
### **🤖 Recommended: Use with Claude Code**
|
942 |
+
|
943 |
+
For the best experience with BitTransformerLM, we recommend using [Claude Code](https://claude.ai/code):
|
944 |
+
|
945 |
+
- **Interactive Setup**: Get step-by-step guidance for configuration
|
946 |
+
- **Real-time Debugging**: Immediate help when things go wrong
|
947 |
+
- **Code Generation**: Custom scripts and experiments tailored to your needs
|
948 |
+
- **Architecture Explanation**: Deep understanding of bit-native processing
|
949 |
+
- **Best Practices**: Learn optimal configurations for your use case
|
950 |
+
|
951 |
+
Claude Code understands BitTransformerLM's unique architecture and can help you navigate the complexities of bit-level language modeling.
|
952 |
+
|
953 |
+
---
|
954 |
+
|
955 |
+
**Remember: BitTransformerLM is experimental research software. Always validate results thoroughly and use safety monitoring in any deployment.**
|
956 |
+
|
957 |
+
Happy experimenting! 🤖✨
|