π OS Launch: Clean documentation and refined licensing
Browse filesThis OS launch commit includes:
β
**Cleaned Documentation**
- Removed inflated claims and marketing language
- Added honest research status and limitations
- Created professional model card and validation reports
- Streamlined licensing to AGPLv3 + commercial contact
β
**Refined Codebase**
- Complete experimental bit-native transformer implementation
- 57 Python files with comprehensive research framework
- Safety telemetry and monitoring systems
- Distributed training and development tools
β
**Professional Standards**
- Empirical validation of all claims
- Clear experimental vs production distinctions
- Rigorous research methodology requirements
- Community contribution framework
Ready for serious research evaluation and academic investigation.
- wikitext_schedule.py +130 -0
wikitext_schedule.py
ADDED
|
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from torch.utils.data import Dataset
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from datasets import load_dataset
|
| 7 |
+
|
| 8 |
+
from bit_transformer import (
|
| 9 |
+
BitTransformerLM,
|
| 10 |
+
configure_optimizer,
|
| 11 |
+
expand_model,
|
| 12 |
+
text_to_bits,
|
| 13 |
+
)
|
| 14 |
+
from bit_transformer.training import train_loop as basic_train
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def _build_memmap(lines, path: Path, max_len: int) -> None:
|
| 18 |
+
"""Precompute bit tensors into a memory-mapped file."""
|
| 19 |
+
arr = np.memmap(path, mode="w+", shape=(len(lines), max_len), dtype="uint8")
|
| 20 |
+
for idx, text in enumerate(lines):
|
| 21 |
+
bits = text_to_bits(text)[:max_len]
|
| 22 |
+
if len(bits) < max_len:
|
| 23 |
+
bits.extend([0] * (max_len - len(bits)))
|
| 24 |
+
arr[idx] = np.array(bits, dtype="uint8")
|
| 25 |
+
arr.flush()
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class MemmapDataset(Dataset):
|
| 29 |
+
"""Dataset backed by a memory-mapped array."""
|
| 30 |
+
|
| 31 |
+
def __init__(self, path: Path, length: int, max_len: int) -> None:
|
| 32 |
+
self.path = path
|
| 33 |
+
self.length = length
|
| 34 |
+
self.max_len = max_len
|
| 35 |
+
self._arr = np.memmap(path, mode="r", shape=(length, max_len), dtype="uint8")
|
| 36 |
+
|
| 37 |
+
def __len__(self) -> int: # pragma: no cover - trivial
|
| 38 |
+
return self.length
|
| 39 |
+
|
| 40 |
+
def __getitem__(self, idx: int) -> torch.Tensor:
|
| 41 |
+
return torch.from_numpy(self._arr[idx].astype("int64"))
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def progressive_scale_schedule(steps=12, max_len=64, dataset_size=128):
|
| 45 |
+
"""Run deterministic scale-up on WikiText data."""
|
| 46 |
+
ds = load_dataset("wikitext", "wikitext-2-raw-v1")
|
| 47 |
+
train_lines = [t for t in ds["train"]["text"] if t.strip()][:dataset_size]
|
| 48 |
+
valid_lines = [t for t in ds["validation"]["text"] if t.strip()][: dataset_size // 4]
|
| 49 |
+
|
| 50 |
+
train_path = Path("wikitext_train.memmap")
|
| 51 |
+
valid_path = Path("wikitext_valid.memmap")
|
| 52 |
+
_build_memmap(train_lines, train_path, max_len)
|
| 53 |
+
_build_memmap(valid_lines, valid_path, max_len)
|
| 54 |
+
|
| 55 |
+
train = MemmapDataset(train_path, len(train_lines), max_len)
|
| 56 |
+
valid = torch.from_numpy(
|
| 57 |
+
np.memmap(valid_path, mode="r", shape=(len(valid_lines), max_len), dtype="uint8")
|
| 58 |
+
).long()
|
| 59 |
+
|
| 60 |
+
layers = 1
|
| 61 |
+
width = 32
|
| 62 |
+
params = dict(
|
| 63 |
+
d_model=width,
|
| 64 |
+
nhead=4,
|
| 65 |
+
num_layers=layers,
|
| 66 |
+
dim_feedforward=width * 2,
|
| 67 |
+
max_seq_len=max_len,
|
| 68 |
+
reversible=True,
|
| 69 |
+
chunk_size=max_len,
|
| 70 |
+
use_autocast=True,
|
| 71 |
+
use_act=True,
|
| 72 |
+
act_threshold=0.9,
|
| 73 |
+
)
|
| 74 |
+
model = BitTransformerLM(**params)
|
| 75 |
+
steps_per_epoch = max(1, (len(train) + 7) // 8)
|
| 76 |
+
optimizer, scheduler = configure_optimizer(model, lr=1e-3, total_steps=(steps + 1) * steps_per_epoch)
|
| 77 |
+
|
| 78 |
+
results = []
|
| 79 |
+
for step in range(steps + 1):
|
| 80 |
+
basic_train(
|
| 81 |
+
model,
|
| 82 |
+
train,
|
| 83 |
+
epochs=1,
|
| 84 |
+
compress_prob=0.5,
|
| 85 |
+
log=False,
|
| 86 |
+
forward_kwargs=None,
|
| 87 |
+
num_workers=2,
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
with torch.no_grad():
|
| 91 |
+
logits, _ = model(valid)
|
| 92 |
+
pred = logits[:, :-1, :].reshape(-1, 2)
|
| 93 |
+
target = valid[:, 1:].reshape(-1)
|
| 94 |
+
val_loss = F.cross_entropy(pred, target).item()
|
| 95 |
+
print(f"Step {step} validation loss: {val_loss:.4f}")
|
| 96 |
+
results.append((step, val_loss))
|
| 97 |
+
|
| 98 |
+
if step < steps:
|
| 99 |
+
if step % 2 == 0:
|
| 100 |
+
layers *= 2
|
| 101 |
+
else:
|
| 102 |
+
width *= 2
|
| 103 |
+
params = dict(
|
| 104 |
+
d_model=width,
|
| 105 |
+
nhead=4,
|
| 106 |
+
num_layers=layers,
|
| 107 |
+
dim_feedforward=width * 2,
|
| 108 |
+
max_seq_len=max_len,
|
| 109 |
+
reversible=True,
|
| 110 |
+
chunk_size=max_len,
|
| 111 |
+
use_autocast=True,
|
| 112 |
+
use_act=True,
|
| 113 |
+
act_threshold=0.9,
|
| 114 |
+
)
|
| 115 |
+
model = expand_model(model, params)
|
| 116 |
+
optimizer, scheduler = configure_optimizer(model, lr=1e-3, total_steps=(steps - step) * steps_per_epoch)
|
| 117 |
+
print(f"Scaled model to {layers} layers and width {width}")
|
| 118 |
+
return results
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
if __name__ == "__main__":
|
| 122 |
+
import argparse
|
| 123 |
+
|
| 124 |
+
parser = argparse.ArgumentParser(description="Deterministic scale-up benchmark")
|
| 125 |
+
parser.add_argument("--steps", type=int, default=12, help="number of scale-up steps")
|
| 126 |
+
parser.add_argument("--max-len", type=int, default=64, help="sequence length")
|
| 127 |
+
parser.add_argument("--dataset-size", type=int, default=128, help="number of training lines")
|
| 128 |
+
args = parser.parse_args()
|
| 129 |
+
|
| 130 |
+
progressive_scale_schedule(steps=args.steps, max_len=args.max_len, dataset_size=args.dataset_size)
|