π OS Launch: Clean documentation and refined licensing
Browse filesThis OS launch commit includes:
β
**Cleaned Documentation**
- Removed inflated claims and marketing language
- Added honest research status and limitations
- Created professional model card and validation reports
- Streamlined licensing to AGPLv3 + commercial contact
β
**Refined Codebase**
- Complete experimental bit-native transformer implementation
- 57 Python files with comprehensive research framework
- Safety telemetry and monitoring systems
- Distributed training and development tools
β
**Professional Standards**
- Empirical validation of all claims
- Clear experimental vs production distinctions
- Rigorous research methodology requirements
- Community contribution framework
Ready for serious research evaluation and academic investigation.
- integration_flow.py +110 -0
integration_flow.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch.profiler import profile
|
| 3 |
+
from bit_transformer import (
|
| 4 |
+
BitTransformerLM,
|
| 5 |
+
quantize_dynamic,
|
| 6 |
+
hil_safe_inference,
|
| 7 |
+
collapse_submodel,
|
| 8 |
+
)
|
| 9 |
+
from bit_transformer.training import train_loop
|
| 10 |
+
from bit_transformer.torch_utils import cpu_autocast
|
| 11 |
+
|
| 12 |
+
def train(
|
| 13 |
+
model: BitTransformerLM,
|
| 14 |
+
data: torch.Tensor,
|
| 15 |
+
epochs: int = 3,
|
| 16 |
+
compress_prob: float = 0.5,
|
| 17 |
+
direct_prob: float = 0.0,
|
| 18 |
+
log: bool = False,
|
| 19 |
+
forward_kwargs: dict | None = None,
|
| 20 |
+
) -> list[dict]:
|
| 21 |
+
"""Train on bit sequences with optional random compression.
|
| 22 |
+
|
| 23 |
+
If ``direct_prob`` is positive, some batches are fed using their
|
| 24 |
+
run-length encoded representation packed into bits. Loss on these
|
| 25 |
+
direct-compressed batches is tracked separately.
|
| 26 |
+
|
| 27 |
+
Returns a list of per-epoch metric dictionaries containing raw and
|
| 28 |
+
compressed loss/accuracy statistics and the mean compression ratio.
|
| 29 |
+
"""
|
| 30 |
+
return train_loop(
|
| 31 |
+
model,
|
| 32 |
+
data,
|
| 33 |
+
epochs=epochs,
|
| 34 |
+
compress_prob=compress_prob,
|
| 35 |
+
direct_prob=direct_prob,
|
| 36 |
+
log=log,
|
| 37 |
+
forward_kwargs=forward_kwargs,
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def main() -> None:
|
| 42 |
+
data = torch.randint(0, 2, (64, 128), dtype=torch.long)
|
| 43 |
+
validation_bits = torch.randint(0, 2, (16, 128), dtype=torch.long)
|
| 44 |
+
input_bits = torch.randint(0, 2, (1, 128), dtype=torch.long)
|
| 45 |
+
bit_sequence_data = data.tolist()
|
| 46 |
+
|
| 47 |
+
model = BitTransformerLM(
|
| 48 |
+
d_model=32,
|
| 49 |
+
nhead=4,
|
| 50 |
+
num_layers=1,
|
| 51 |
+
dim_feedforward=64,
|
| 52 |
+
max_seq_len=128,
|
| 53 |
+
use_act=True,
|
| 54 |
+
act_threshold=0.7,
|
| 55 |
+
reversible=True,
|
| 56 |
+
chunk_size=128,
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
for step in range(1, 13):
|
| 60 |
+
if step % 2 == 0:
|
| 61 |
+
model = model.double_width()
|
| 62 |
+
else:
|
| 63 |
+
model = model.double_layers()
|
| 64 |
+
train(model, data, epochs=3, compress_prob=0.5, log=True)
|
| 65 |
+
_, telemetry = model(validation_bits)
|
| 66 |
+
K = telemetry["negentropy_logits"].mean().item()
|
| 67 |
+
C = telemetry["lz_complexity_logits"].mean().item()
|
| 68 |
+
S = telemetry["symbiosis_score"].mean().item()
|
| 69 |
+
assert (
|
| 70 |
+
K > 0.3 and C > 0.35 and S > 0.5
|
| 71 |
+
), f"Step {step} telemetry floor failure"
|
| 72 |
+
|
| 73 |
+
with cpu_autocast():
|
| 74 |
+
model(input_bits)
|
| 75 |
+
|
| 76 |
+
quantized_model = quantize_dynamic(model)
|
| 77 |
+
quantized_model.eval()
|
| 78 |
+
|
| 79 |
+
safe_output, _ = hil_safe_inference(
|
| 80 |
+
quantized_model, input_bits, c_floor=0.35, s_floor=0.5
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
student_model, _ = collapse_submodel(
|
| 84 |
+
bit_sequence_data,
|
| 85 |
+
target_params=dict(
|
| 86 |
+
d_model=16,
|
| 87 |
+
nhead=4,
|
| 88 |
+
num_layers=1,
|
| 89 |
+
dim_feedforward=32,
|
| 90 |
+
max_seq_len=128,
|
| 91 |
+
),
|
| 92 |
+
floors={"negentropy": 0.3, "lz_complexity": 0.35, "symbiosis_score": 0.5},
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
compiled_model = (
|
| 96 |
+
torch.compile(student_model)
|
| 97 |
+
if hasattr(torch, "compile")
|
| 98 |
+
else student_model
|
| 99 |
+
)
|
| 100 |
+
compiled_model.eval()
|
| 101 |
+
|
| 102 |
+
with profile() as prof:
|
| 103 |
+
compiled_model(input_bits)
|
| 104 |
+
|
| 105 |
+
prof.export_chrome_trace("trace12.json")
|
| 106 |
+
print("Safe output bits:", safe_output.squeeze(0).tolist())
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
if __name__ == "__main__":
|
| 110 |
+
main()
|