π OS Launch: Clean documentation and refined licensing
Browse filesThis OS launch commit includes:
β
**Cleaned Documentation**
- Removed inflated claims and marketing language
- Added honest research status and limitations
- Created professional model card and validation reports
- Streamlined licensing to AGPLv3 + commercial contact
β
**Refined Codebase**
- Complete experimental bit-native transformer implementation
- 57 Python files with comprehensive research framework
- Safety telemetry and monitoring systems
- Distributed training and development tools
β
**Professional Standards**
- Empirical validation of all claims
- Clear experimental vs production distinctions
- Rigorous research methodology requirements
- Community contribution framework
Ready for serious research evaluation and academic investigation.
- markov_spline_cli.py +307 -0
markov_spline_cli.py
ADDED
|
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
MarkovSpline CLI Interface for BitTransformerLM Integration
|
| 4 |
+
|
| 5 |
+
Provides command-line tools for using MarkovSpline data smoothing
|
| 6 |
+
with BitTransformerLM training and inference pipelines.
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import argparse
|
| 10 |
+
import sys
|
| 11 |
+
import os
|
| 12 |
+
import json
|
| 13 |
+
import numpy as np
|
| 14 |
+
import torch
|
| 15 |
+
from pathlib import Path
|
| 16 |
+
from typing import List, Dict, Any, Optional
|
| 17 |
+
|
| 18 |
+
# Add MarkovSpline to path
|
| 19 |
+
sys.path.insert(0, '/data/MarkovSpline')
|
| 20 |
+
from bitpipe_integration import MarkovSplineBitPipeModule, create_markov_spline_bitpipe_module
|
| 21 |
+
from core import SplineType
|
| 22 |
+
|
| 23 |
+
# Simple text to bits converter for CLI
|
| 24 |
+
class TextToBitsConverter:
|
| 25 |
+
"""Simple text to bits converter."""
|
| 26 |
+
|
| 27 |
+
def text_to_bits(self, text, max_length=128):
|
| 28 |
+
"""Convert text to bit sequence."""
|
| 29 |
+
bit_sequence = []
|
| 30 |
+
for char in text[:max_length//8]:
|
| 31 |
+
char_bits = format(ord(char), '08b')
|
| 32 |
+
bit_sequence.extend([int(b) for b in char_bits])
|
| 33 |
+
|
| 34 |
+
# Pad or truncate to max_length
|
| 35 |
+
if len(bit_sequence) < max_length:
|
| 36 |
+
bit_sequence.extend([0] * (max_length - len(bit_sequence)))
|
| 37 |
+
else:
|
| 38 |
+
bit_sequence = bit_sequence[:max_length]
|
| 39 |
+
|
| 40 |
+
return bit_sequence
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class MarkovSplineBitTransformerCLI:
|
| 44 |
+
"""CLI interface for MarkovSpline + BitTransformerLM integration."""
|
| 45 |
+
|
| 46 |
+
def __init__(self):
|
| 47 |
+
self.markov_module = None
|
| 48 |
+
self.text_converter = TextToBitsConverter()
|
| 49 |
+
|
| 50 |
+
def initialize_markov_spline(self, config: Optional[Dict] = None) -> bool:
|
| 51 |
+
"""Initialize MarkovSpline module with configuration."""
|
| 52 |
+
try:
|
| 53 |
+
self.markov_module = create_markov_spline_bitpipe_module(config)
|
| 54 |
+
print(f"β
Initialized MarkovSpline module: {self.markov_module.module_name}")
|
| 55 |
+
return True
|
| 56 |
+
except Exception as e:
|
| 57 |
+
print(f"β Failed to initialize MarkovSpline: {e}")
|
| 58 |
+
return False
|
| 59 |
+
|
| 60 |
+
def preprocess_text_data(self,
|
| 61 |
+
input_file: str,
|
| 62 |
+
output_file: str,
|
| 63 |
+
smoothing_strength: float = 0.15,
|
| 64 |
+
chunk_size: int = 128) -> bool:
|
| 65 |
+
"""Preprocess text data using MarkovSpline for BitTransformerLM training."""
|
| 66 |
+
|
| 67 |
+
if not self.markov_module:
|
| 68 |
+
print("β MarkovSpline module not initialized")
|
| 69 |
+
return False
|
| 70 |
+
|
| 71 |
+
try:
|
| 72 |
+
# Read input text
|
| 73 |
+
with open(input_file, 'r', encoding='utf-8') as f:
|
| 74 |
+
text_data = f.read().strip().split('\n')
|
| 75 |
+
|
| 76 |
+
print(f"π Processing {len(text_data)} text samples...")
|
| 77 |
+
|
| 78 |
+
# Convert text to bit sequences
|
| 79 |
+
bit_sequences = []
|
| 80 |
+
for text in text_data:
|
| 81 |
+
if text.strip():
|
| 82 |
+
bits = self.text_converter.text_to_bits(text, max_length=chunk_size)
|
| 83 |
+
bit_sequences.append(bits)
|
| 84 |
+
|
| 85 |
+
print(f"π Converting to bit sequences: {len(bit_sequences)} sequences")
|
| 86 |
+
|
| 87 |
+
# Initialize MarkovSpline preprocessor
|
| 88 |
+
self.markov_module.initialize_application('data_preprocessor',
|
| 89 |
+
smoothing_strength=smoothing_strength,
|
| 90 |
+
preserve_features=True)
|
| 91 |
+
|
| 92 |
+
# Process bit sequences through MarkovSpline
|
| 93 |
+
result = self.markov_module.process_data(
|
| 94 |
+
bit_sequences,
|
| 95 |
+
'preprocess_training',
|
| 96 |
+
binary_data=True
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
if not result['success']:
|
| 100 |
+
print(f"β Processing failed: {result.get('error', 'Unknown error')}")
|
| 101 |
+
return False
|
| 102 |
+
|
| 103 |
+
# Save processed sequences
|
| 104 |
+
processed_data = {
|
| 105 |
+
'processed_sequences': result['processed_sequences'],
|
| 106 |
+
'preprocessing_summary': result['preprocessing_summary'],
|
| 107 |
+
'original_count': len(bit_sequences),
|
| 108 |
+
'smoothing_strength': smoothing_strength,
|
| 109 |
+
'chunk_size': chunk_size
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
+
with open(output_file, 'w') as f:
|
| 113 |
+
json.dump(processed_data, f, indent=2, default=str)
|
| 114 |
+
|
| 115 |
+
print(f"β
Preprocessed data saved to: {output_file}")
|
| 116 |
+
print(f"π Summary: {result['preprocessing_summary']}")
|
| 117 |
+
return True
|
| 118 |
+
|
| 119 |
+
except Exception as e:
|
| 120 |
+
print(f"β Preprocessing failed: {e}")
|
| 121 |
+
return False
|
| 122 |
+
|
| 123 |
+
def smooth_bit_sequence(self,
|
| 124 |
+
bit_sequence: List[int],
|
| 125 |
+
smoothing_type: str = 'predict_binary',
|
| 126 |
+
num_predictions: int = 10) -> Dict[str, Any]:
|
| 127 |
+
"""Smooth/predict bit sequence using MarkovSpline."""
|
| 128 |
+
|
| 129 |
+
if not self.markov_module:
|
| 130 |
+
print("β MarkovSpline module not initialized")
|
| 131 |
+
return {'success': False, 'error': 'Module not initialized'}
|
| 132 |
+
|
| 133 |
+
try:
|
| 134 |
+
result = self.markov_module.process_data(
|
| 135 |
+
bit_sequence,
|
| 136 |
+
smoothing_type,
|
| 137 |
+
num_predictions=num_predictions
|
| 138 |
+
)
|
| 139 |
+
return result
|
| 140 |
+
|
| 141 |
+
except Exception as e:
|
| 142 |
+
print(f"β Bit sequence processing failed: {e}")
|
| 143 |
+
return {'success': False, 'error': str(e)}
|
| 144 |
+
|
| 145 |
+
def smooth_training_gradients(self,
|
| 146 |
+
gradient_file: str,
|
| 147 |
+
output_file: str,
|
| 148 |
+
learning_rate: float = 0.01,
|
| 149 |
+
smoothing_strength: float = 0.2) -> bool:
|
| 150 |
+
"""Apply MarkovSpline gradient smoothing to BitTransformerLM training."""
|
| 151 |
+
|
| 152 |
+
if not self.markov_module:
|
| 153 |
+
print("β MarkovSpline module not initialized")
|
| 154 |
+
return False
|
| 155 |
+
|
| 156 |
+
try:
|
| 157 |
+
# Load gradient data (assuming PyTorch checkpoint format)
|
| 158 |
+
checkpoint = torch.load(gradient_file, map_location='cpu')
|
| 159 |
+
|
| 160 |
+
if 'gradients' not in checkpoint or 'parameters' not in checkpoint:
|
| 161 |
+
print("β Invalid gradient file format")
|
| 162 |
+
return False
|
| 163 |
+
|
| 164 |
+
# Initialize gradient smoother
|
| 165 |
+
self.markov_module.initialize_application('gradient_smoother',
|
| 166 |
+
learning_rate=learning_rate,
|
| 167 |
+
smoothing_strength=smoothing_strength)
|
| 168 |
+
|
| 169 |
+
# Process gradients
|
| 170 |
+
result = self.markov_module.process_data(
|
| 171 |
+
{
|
| 172 |
+
'parameters': checkpoint['parameters'],
|
| 173 |
+
'gradients': checkpoint['gradients']
|
| 174 |
+
},
|
| 175 |
+
'smooth_gradients'
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
if not result['success']:
|
| 179 |
+
print(f"β Gradient smoothing failed: {result.get('error', 'Unknown error')}")
|
| 180 |
+
return False
|
| 181 |
+
|
| 182 |
+
# Save smoothed parameters
|
| 183 |
+
smoothed_checkpoint = {
|
| 184 |
+
'smoothed_parameters': result['smoothed_parameters'],
|
| 185 |
+
'optimization_metrics': result['optimization_metrics'],
|
| 186 |
+
'original_gradients': checkpoint['gradients']
|
| 187 |
+
}
|
| 188 |
+
|
| 189 |
+
torch.save(smoothed_checkpoint, output_file)
|
| 190 |
+
print(f"β
Smoothed gradients saved to: {output_file}")
|
| 191 |
+
print(f"π Optimization metrics: {result['optimization_metrics']}")
|
| 192 |
+
return True
|
| 193 |
+
|
| 194 |
+
except Exception as e:
|
| 195 |
+
print(f"β Gradient smoothing failed: {e}")
|
| 196 |
+
return False
|
| 197 |
+
|
| 198 |
+
def create_smoothed_dataset(self,
|
| 199 |
+
input_dataset: str,
|
| 200 |
+
output_dataset: str,
|
| 201 |
+
config: Optional[Dict] = None) -> bool:
|
| 202 |
+
"""Create smoothed dataset for BitTransformerLM training."""
|
| 203 |
+
|
| 204 |
+
# Default configuration for dataset smoothing
|
| 205 |
+
default_config = {
|
| 206 |
+
'smoothing_strength': 0.1,
|
| 207 |
+
'num_states': 20,
|
| 208 |
+
'spline_type': 'cubic',
|
| 209 |
+
'preserve_features': True
|
| 210 |
+
}
|
| 211 |
+
|
| 212 |
+
if config:
|
| 213 |
+
default_config.update(config)
|
| 214 |
+
|
| 215 |
+
if not self.markov_module:
|
| 216 |
+
self.initialize_markov_spline(default_config)
|
| 217 |
+
|
| 218 |
+
return self.preprocess_text_data(input_dataset, output_dataset,
|
| 219 |
+
default_config['smoothing_strength'])
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
def main():
|
| 223 |
+
parser = argparse.ArgumentParser(description='MarkovSpline CLI for BitTransformerLM')
|
| 224 |
+
parser.add_argument('command', choices=['preprocess', 'smooth-gradients', 'create-dataset', 'predict-bits'],
|
| 225 |
+
help='Command to execute')
|
| 226 |
+
|
| 227 |
+
# Common arguments
|
| 228 |
+
parser.add_argument('--input', '-i', required=True, help='Input file path')
|
| 229 |
+
parser.add_argument('--output', '-o', required=True, help='Output file path')
|
| 230 |
+
parser.add_argument('--config', '-c', help='Configuration JSON file')
|
| 231 |
+
|
| 232 |
+
# Preprocessing arguments
|
| 233 |
+
parser.add_argument('--smoothing-strength', type=float, default=0.15,
|
| 234 |
+
help='Smoothing strength (0.0-1.0)')
|
| 235 |
+
parser.add_argument('--chunk-size', type=int, default=128,
|
| 236 |
+
help='Text chunk size for bit conversion')
|
| 237 |
+
|
| 238 |
+
# Gradient smoothing arguments
|
| 239 |
+
parser.add_argument('--learning-rate', type=float, default=0.01,
|
| 240 |
+
help='Learning rate for gradient smoothing')
|
| 241 |
+
|
| 242 |
+
# Bit prediction arguments
|
| 243 |
+
parser.add_argument('--num-predictions', type=int, default=10,
|
| 244 |
+
help='Number of bit predictions to generate')
|
| 245 |
+
|
| 246 |
+
args = parser.parse_args()
|
| 247 |
+
|
| 248 |
+
# Load configuration if provided
|
| 249 |
+
config = None
|
| 250 |
+
if args.config:
|
| 251 |
+
try:
|
| 252 |
+
with open(args.config, 'r') as f:
|
| 253 |
+
config = json.load(f)
|
| 254 |
+
except Exception as e:
|
| 255 |
+
print(f"β Failed to load config: {e}")
|
| 256 |
+
return 1
|
| 257 |
+
|
| 258 |
+
# Initialize CLI
|
| 259 |
+
cli = MarkovSplineBitTransformerCLI()
|
| 260 |
+
if not cli.initialize_markov_spline(config):
|
| 261 |
+
return 1
|
| 262 |
+
|
| 263 |
+
# Execute command
|
| 264 |
+
success = False
|
| 265 |
+
|
| 266 |
+
if args.command == 'preprocess':
|
| 267 |
+
success = cli.preprocess_text_data(
|
| 268 |
+
args.input, args.output,
|
| 269 |
+
args.smoothing_strength, args.chunk_size
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
elif args.command == 'smooth-gradients':
|
| 273 |
+
success = cli.smooth_training_gradients(
|
| 274 |
+
args.input, args.output,
|
| 275 |
+
args.learning_rate, args.smoothing_strength
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
elif args.command == 'create-dataset':
|
| 279 |
+
success = cli.create_smoothed_dataset(
|
| 280 |
+
args.input, args.output, config
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
elif args.command == 'predict-bits':
|
| 284 |
+
# Read bit sequence from input file
|
| 285 |
+
try:
|
| 286 |
+
with open(args.input, 'r') as f:
|
| 287 |
+
bit_data = json.load(f)
|
| 288 |
+
bit_sequence = bit_data.get('bits', [])
|
| 289 |
+
|
| 290 |
+
result = cli.smooth_bit_sequence(bit_sequence, 'predict_binary', args.num_predictions)
|
| 291 |
+
|
| 292 |
+
if result['success']:
|
| 293 |
+
with open(args.output, 'w') as f:
|
| 294 |
+
json.dump(result, f, indent=2, default=str)
|
| 295 |
+
print(f"β
Bit predictions saved to: {args.output}")
|
| 296 |
+
success = True
|
| 297 |
+
else:
|
| 298 |
+
print(f"β Bit prediction failed: {result.get('error', 'Unknown error')}")
|
| 299 |
+
|
| 300 |
+
except Exception as e:
|
| 301 |
+
print(f"β Bit prediction failed: {e}")
|
| 302 |
+
|
| 303 |
+
return 0 if success else 1
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
if __name__ == '__main__':
|
| 307 |
+
sys.exit(main())
|