π OS Launch: Clean documentation and refined licensing
Browse filesThis OS launch commit includes:
β
**Cleaned Documentation**
- Removed inflated claims and marketing language
- Added honest research status and limitations
- Created professional model card and validation reports
- Streamlined licensing to AGPLv3 + commercial contact
β
**Refined Codebase**
- Complete experimental bit-native transformer implementation
- 57 Python files with comprehensive research framework
- Safety telemetry and monitoring systems
- Distributed training and development tools
β
**Professional Standards**
- Empirical validation of all claims
- Clear experimental vs production distinctions
- Rigorous research methodology requirements
- Community contribution framework
Ready for serious research evaluation and academic investigation.
- markov_spline_cli.py +307 -0
markov_spline_cli.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
MarkovSpline CLI Interface for BitTransformerLM Integration
|
4 |
+
|
5 |
+
Provides command-line tools for using MarkovSpline data smoothing
|
6 |
+
with BitTransformerLM training and inference pipelines.
|
7 |
+
"""
|
8 |
+
|
9 |
+
import argparse
|
10 |
+
import sys
|
11 |
+
import os
|
12 |
+
import json
|
13 |
+
import numpy as np
|
14 |
+
import torch
|
15 |
+
from pathlib import Path
|
16 |
+
from typing import List, Dict, Any, Optional
|
17 |
+
|
18 |
+
# Add MarkovSpline to path
|
19 |
+
sys.path.insert(0, '/data/MarkovSpline')
|
20 |
+
from bitpipe_integration import MarkovSplineBitPipeModule, create_markov_spline_bitpipe_module
|
21 |
+
from core import SplineType
|
22 |
+
|
23 |
+
# Simple text to bits converter for CLI
|
24 |
+
class TextToBitsConverter:
|
25 |
+
"""Simple text to bits converter."""
|
26 |
+
|
27 |
+
def text_to_bits(self, text, max_length=128):
|
28 |
+
"""Convert text to bit sequence."""
|
29 |
+
bit_sequence = []
|
30 |
+
for char in text[:max_length//8]:
|
31 |
+
char_bits = format(ord(char), '08b')
|
32 |
+
bit_sequence.extend([int(b) for b in char_bits])
|
33 |
+
|
34 |
+
# Pad or truncate to max_length
|
35 |
+
if len(bit_sequence) < max_length:
|
36 |
+
bit_sequence.extend([0] * (max_length - len(bit_sequence)))
|
37 |
+
else:
|
38 |
+
bit_sequence = bit_sequence[:max_length]
|
39 |
+
|
40 |
+
return bit_sequence
|
41 |
+
|
42 |
+
|
43 |
+
class MarkovSplineBitTransformerCLI:
|
44 |
+
"""CLI interface for MarkovSpline + BitTransformerLM integration."""
|
45 |
+
|
46 |
+
def __init__(self):
|
47 |
+
self.markov_module = None
|
48 |
+
self.text_converter = TextToBitsConverter()
|
49 |
+
|
50 |
+
def initialize_markov_spline(self, config: Optional[Dict] = None) -> bool:
|
51 |
+
"""Initialize MarkovSpline module with configuration."""
|
52 |
+
try:
|
53 |
+
self.markov_module = create_markov_spline_bitpipe_module(config)
|
54 |
+
print(f"β
Initialized MarkovSpline module: {self.markov_module.module_name}")
|
55 |
+
return True
|
56 |
+
except Exception as e:
|
57 |
+
print(f"β Failed to initialize MarkovSpline: {e}")
|
58 |
+
return False
|
59 |
+
|
60 |
+
def preprocess_text_data(self,
|
61 |
+
input_file: str,
|
62 |
+
output_file: str,
|
63 |
+
smoothing_strength: float = 0.15,
|
64 |
+
chunk_size: int = 128) -> bool:
|
65 |
+
"""Preprocess text data using MarkovSpline for BitTransformerLM training."""
|
66 |
+
|
67 |
+
if not self.markov_module:
|
68 |
+
print("β MarkovSpline module not initialized")
|
69 |
+
return False
|
70 |
+
|
71 |
+
try:
|
72 |
+
# Read input text
|
73 |
+
with open(input_file, 'r', encoding='utf-8') as f:
|
74 |
+
text_data = f.read().strip().split('\n')
|
75 |
+
|
76 |
+
print(f"π Processing {len(text_data)} text samples...")
|
77 |
+
|
78 |
+
# Convert text to bit sequences
|
79 |
+
bit_sequences = []
|
80 |
+
for text in text_data:
|
81 |
+
if text.strip():
|
82 |
+
bits = self.text_converter.text_to_bits(text, max_length=chunk_size)
|
83 |
+
bit_sequences.append(bits)
|
84 |
+
|
85 |
+
print(f"π Converting to bit sequences: {len(bit_sequences)} sequences")
|
86 |
+
|
87 |
+
# Initialize MarkovSpline preprocessor
|
88 |
+
self.markov_module.initialize_application('data_preprocessor',
|
89 |
+
smoothing_strength=smoothing_strength,
|
90 |
+
preserve_features=True)
|
91 |
+
|
92 |
+
# Process bit sequences through MarkovSpline
|
93 |
+
result = self.markov_module.process_data(
|
94 |
+
bit_sequences,
|
95 |
+
'preprocess_training',
|
96 |
+
binary_data=True
|
97 |
+
)
|
98 |
+
|
99 |
+
if not result['success']:
|
100 |
+
print(f"β Processing failed: {result.get('error', 'Unknown error')}")
|
101 |
+
return False
|
102 |
+
|
103 |
+
# Save processed sequences
|
104 |
+
processed_data = {
|
105 |
+
'processed_sequences': result['processed_sequences'],
|
106 |
+
'preprocessing_summary': result['preprocessing_summary'],
|
107 |
+
'original_count': len(bit_sequences),
|
108 |
+
'smoothing_strength': smoothing_strength,
|
109 |
+
'chunk_size': chunk_size
|
110 |
+
}
|
111 |
+
|
112 |
+
with open(output_file, 'w') as f:
|
113 |
+
json.dump(processed_data, f, indent=2, default=str)
|
114 |
+
|
115 |
+
print(f"β
Preprocessed data saved to: {output_file}")
|
116 |
+
print(f"π Summary: {result['preprocessing_summary']}")
|
117 |
+
return True
|
118 |
+
|
119 |
+
except Exception as e:
|
120 |
+
print(f"β Preprocessing failed: {e}")
|
121 |
+
return False
|
122 |
+
|
123 |
+
def smooth_bit_sequence(self,
|
124 |
+
bit_sequence: List[int],
|
125 |
+
smoothing_type: str = 'predict_binary',
|
126 |
+
num_predictions: int = 10) -> Dict[str, Any]:
|
127 |
+
"""Smooth/predict bit sequence using MarkovSpline."""
|
128 |
+
|
129 |
+
if not self.markov_module:
|
130 |
+
print("β MarkovSpline module not initialized")
|
131 |
+
return {'success': False, 'error': 'Module not initialized'}
|
132 |
+
|
133 |
+
try:
|
134 |
+
result = self.markov_module.process_data(
|
135 |
+
bit_sequence,
|
136 |
+
smoothing_type,
|
137 |
+
num_predictions=num_predictions
|
138 |
+
)
|
139 |
+
return result
|
140 |
+
|
141 |
+
except Exception as e:
|
142 |
+
print(f"β Bit sequence processing failed: {e}")
|
143 |
+
return {'success': False, 'error': str(e)}
|
144 |
+
|
145 |
+
def smooth_training_gradients(self,
|
146 |
+
gradient_file: str,
|
147 |
+
output_file: str,
|
148 |
+
learning_rate: float = 0.01,
|
149 |
+
smoothing_strength: float = 0.2) -> bool:
|
150 |
+
"""Apply MarkovSpline gradient smoothing to BitTransformerLM training."""
|
151 |
+
|
152 |
+
if not self.markov_module:
|
153 |
+
print("β MarkovSpline module not initialized")
|
154 |
+
return False
|
155 |
+
|
156 |
+
try:
|
157 |
+
# Load gradient data (assuming PyTorch checkpoint format)
|
158 |
+
checkpoint = torch.load(gradient_file, map_location='cpu')
|
159 |
+
|
160 |
+
if 'gradients' not in checkpoint or 'parameters' not in checkpoint:
|
161 |
+
print("β Invalid gradient file format")
|
162 |
+
return False
|
163 |
+
|
164 |
+
# Initialize gradient smoother
|
165 |
+
self.markov_module.initialize_application('gradient_smoother',
|
166 |
+
learning_rate=learning_rate,
|
167 |
+
smoothing_strength=smoothing_strength)
|
168 |
+
|
169 |
+
# Process gradients
|
170 |
+
result = self.markov_module.process_data(
|
171 |
+
{
|
172 |
+
'parameters': checkpoint['parameters'],
|
173 |
+
'gradients': checkpoint['gradients']
|
174 |
+
},
|
175 |
+
'smooth_gradients'
|
176 |
+
)
|
177 |
+
|
178 |
+
if not result['success']:
|
179 |
+
print(f"β Gradient smoothing failed: {result.get('error', 'Unknown error')}")
|
180 |
+
return False
|
181 |
+
|
182 |
+
# Save smoothed parameters
|
183 |
+
smoothed_checkpoint = {
|
184 |
+
'smoothed_parameters': result['smoothed_parameters'],
|
185 |
+
'optimization_metrics': result['optimization_metrics'],
|
186 |
+
'original_gradients': checkpoint['gradients']
|
187 |
+
}
|
188 |
+
|
189 |
+
torch.save(smoothed_checkpoint, output_file)
|
190 |
+
print(f"β
Smoothed gradients saved to: {output_file}")
|
191 |
+
print(f"π Optimization metrics: {result['optimization_metrics']}")
|
192 |
+
return True
|
193 |
+
|
194 |
+
except Exception as e:
|
195 |
+
print(f"β Gradient smoothing failed: {e}")
|
196 |
+
return False
|
197 |
+
|
198 |
+
def create_smoothed_dataset(self,
|
199 |
+
input_dataset: str,
|
200 |
+
output_dataset: str,
|
201 |
+
config: Optional[Dict] = None) -> bool:
|
202 |
+
"""Create smoothed dataset for BitTransformerLM training."""
|
203 |
+
|
204 |
+
# Default configuration for dataset smoothing
|
205 |
+
default_config = {
|
206 |
+
'smoothing_strength': 0.1,
|
207 |
+
'num_states': 20,
|
208 |
+
'spline_type': 'cubic',
|
209 |
+
'preserve_features': True
|
210 |
+
}
|
211 |
+
|
212 |
+
if config:
|
213 |
+
default_config.update(config)
|
214 |
+
|
215 |
+
if not self.markov_module:
|
216 |
+
self.initialize_markov_spline(default_config)
|
217 |
+
|
218 |
+
return self.preprocess_text_data(input_dataset, output_dataset,
|
219 |
+
default_config['smoothing_strength'])
|
220 |
+
|
221 |
+
|
222 |
+
def main():
|
223 |
+
parser = argparse.ArgumentParser(description='MarkovSpline CLI for BitTransformerLM')
|
224 |
+
parser.add_argument('command', choices=['preprocess', 'smooth-gradients', 'create-dataset', 'predict-bits'],
|
225 |
+
help='Command to execute')
|
226 |
+
|
227 |
+
# Common arguments
|
228 |
+
parser.add_argument('--input', '-i', required=True, help='Input file path')
|
229 |
+
parser.add_argument('--output', '-o', required=True, help='Output file path')
|
230 |
+
parser.add_argument('--config', '-c', help='Configuration JSON file')
|
231 |
+
|
232 |
+
# Preprocessing arguments
|
233 |
+
parser.add_argument('--smoothing-strength', type=float, default=0.15,
|
234 |
+
help='Smoothing strength (0.0-1.0)')
|
235 |
+
parser.add_argument('--chunk-size', type=int, default=128,
|
236 |
+
help='Text chunk size for bit conversion')
|
237 |
+
|
238 |
+
# Gradient smoothing arguments
|
239 |
+
parser.add_argument('--learning-rate', type=float, default=0.01,
|
240 |
+
help='Learning rate for gradient smoothing')
|
241 |
+
|
242 |
+
# Bit prediction arguments
|
243 |
+
parser.add_argument('--num-predictions', type=int, default=10,
|
244 |
+
help='Number of bit predictions to generate')
|
245 |
+
|
246 |
+
args = parser.parse_args()
|
247 |
+
|
248 |
+
# Load configuration if provided
|
249 |
+
config = None
|
250 |
+
if args.config:
|
251 |
+
try:
|
252 |
+
with open(args.config, 'r') as f:
|
253 |
+
config = json.load(f)
|
254 |
+
except Exception as e:
|
255 |
+
print(f"β Failed to load config: {e}")
|
256 |
+
return 1
|
257 |
+
|
258 |
+
# Initialize CLI
|
259 |
+
cli = MarkovSplineBitTransformerCLI()
|
260 |
+
if not cli.initialize_markov_spline(config):
|
261 |
+
return 1
|
262 |
+
|
263 |
+
# Execute command
|
264 |
+
success = False
|
265 |
+
|
266 |
+
if args.command == 'preprocess':
|
267 |
+
success = cli.preprocess_text_data(
|
268 |
+
args.input, args.output,
|
269 |
+
args.smoothing_strength, args.chunk_size
|
270 |
+
)
|
271 |
+
|
272 |
+
elif args.command == 'smooth-gradients':
|
273 |
+
success = cli.smooth_training_gradients(
|
274 |
+
args.input, args.output,
|
275 |
+
args.learning_rate, args.smoothing_strength
|
276 |
+
)
|
277 |
+
|
278 |
+
elif args.command == 'create-dataset':
|
279 |
+
success = cli.create_smoothed_dataset(
|
280 |
+
args.input, args.output, config
|
281 |
+
)
|
282 |
+
|
283 |
+
elif args.command == 'predict-bits':
|
284 |
+
# Read bit sequence from input file
|
285 |
+
try:
|
286 |
+
with open(args.input, 'r') as f:
|
287 |
+
bit_data = json.load(f)
|
288 |
+
bit_sequence = bit_data.get('bits', [])
|
289 |
+
|
290 |
+
result = cli.smooth_bit_sequence(bit_sequence, 'predict_binary', args.num_predictions)
|
291 |
+
|
292 |
+
if result['success']:
|
293 |
+
with open(args.output, 'w') as f:
|
294 |
+
json.dump(result, f, indent=2, default=str)
|
295 |
+
print(f"β
Bit predictions saved to: {args.output}")
|
296 |
+
success = True
|
297 |
+
else:
|
298 |
+
print(f"β Bit prediction failed: {result.get('error', 'Unknown error')}")
|
299 |
+
|
300 |
+
except Exception as e:
|
301 |
+
print(f"β Bit prediction failed: {e}")
|
302 |
+
|
303 |
+
return 0 if success else 1
|
304 |
+
|
305 |
+
|
306 |
+
if __name__ == '__main__':
|
307 |
+
sys.exit(main())
|