🚀 Final optimization: Update model.py with production-ready enhancements
Browse files- bit_transformer/model.py +931 -0
bit_transformer/model.py
ADDED
@@ -0,0 +1,931 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import contextlib
|
3 |
+
import logging
|
4 |
+
from typing import Dict, List, Tuple, Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.distributed as dist
|
8 |
+
import sys
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import torch.utils.checkpoint as checkpoint
|
12 |
+
|
13 |
+
from .torch_utils import cpu_autocast
|
14 |
+
|
15 |
+
from .optimization import configure_optimizer
|
16 |
+
from .compression import decompress_bits
|
17 |
+
from .parity import enforce_parity
|
18 |
+
|
19 |
+
_mask_cache: Dict[Tuple[int, torch.device], torch.Tensor] = {}
|
20 |
+
_attention_cache: Dict[str, torch.Tensor] = {} # For caching attention patterns
|
21 |
+
_MAX_CACHE_SIZE = 50 # Limit cache growth
|
22 |
+
|
23 |
+
|
24 |
+
def clear_cache():
|
25 |
+
"""Clear memory caches to prevent OOM in long sequences."""
|
26 |
+
global _mask_cache, _attention_cache
|
27 |
+
_mask_cache.clear()
|
28 |
+
_attention_cache.clear()
|
29 |
+
|
30 |
+
|
31 |
+
def get_tri_mask(seq_len: int, device: torch.device) -> torch.Tensor:
|
32 |
+
"""Return or create a cached upper-triangular mask with memory management."""
|
33 |
+
key = (seq_len, device)
|
34 |
+
|
35 |
+
# Clear cache if it gets too large
|
36 |
+
if len(_mask_cache) > _MAX_CACHE_SIZE:
|
37 |
+
clear_cache()
|
38 |
+
|
39 |
+
if key not in _mask_cache:
|
40 |
+
_mask_cache[key] = torch.triu(
|
41 |
+
torch.ones(seq_len, seq_len, device=device, dtype=torch.bool), 1
|
42 |
+
)
|
43 |
+
return _mask_cache[key]
|
44 |
+
|
45 |
+
try: # torch.compile may not work on all Python versions
|
46 |
+
if torch.__version__ and tuple(map(int, torch.__version__.split(".")[:2])) >= (2, 0) and sys.version_info < (3, 11):
|
47 |
+
compile_fn = torch.compile
|
48 |
+
else:
|
49 |
+
raise RuntimeError
|
50 |
+
except Exception: # pragma: no cover - handle missing torch or unsupported version
|
51 |
+
|
52 |
+
def compile_fn(fn=None, **kwargs):
|
53 |
+
if fn is None:
|
54 |
+
return lambda f: f
|
55 |
+
return fn
|
56 |
+
|
57 |
+
|
58 |
+
class PositionalEncoding(nn.Module):
|
59 |
+
"""Sinusoidal positional encoding."""
|
60 |
+
|
61 |
+
def __init__(self, d_model: int, max_len: int = 1024) -> None:
|
62 |
+
super().__init__()
|
63 |
+
pe = torch.zeros(max_len, d_model)
|
64 |
+
pos = torch.arange(0, max_len, dtype=torch.float32).unsqueeze(1)
|
65 |
+
inv = torch.exp(
|
66 |
+
torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)
|
67 |
+
)
|
68 |
+
pe[:, 0::2] = torch.sin(pos * inv)
|
69 |
+
pe[:, 1::2] = torch.cos(pos * inv)
|
70 |
+
self.register_buffer("pe", pe.unsqueeze(1))
|
71 |
+
|
72 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
73 |
+
"""Add positional encoding to input tensor."""
|
74 |
+
return x + self.pe[: x.size(0)]
|
75 |
+
|
76 |
+
|
77 |
+
class LoggingTransformerEncoderLayer(nn.Module):
|
78 |
+
"""Transformer encoder layer that exposes attention weights.
|
79 |
+
|
80 |
+
It optionally performs chunked attention with a fixed window size.
|
81 |
+
"""
|
82 |
+
|
83 |
+
def __init__(
|
84 |
+
self,
|
85 |
+
d_model: int,
|
86 |
+
nhead: int,
|
87 |
+
dim_feedforward: int = 512,
|
88 |
+
dropout: float = 0.1,
|
89 |
+
chunk_size: Optional[int] = None,
|
90 |
+
overlap: int = 0,
|
91 |
+
full_attn_logging: Optional[bool] = None,
|
92 |
+
) -> None:
|
93 |
+
super().__init__()
|
94 |
+
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=True)
|
95 |
+
self.chunk_size = chunk_size
|
96 |
+
self.overlap = overlap
|
97 |
+
if full_attn_logging is None:
|
98 |
+
full_attn_logging = False if chunk_size is not None else True
|
99 |
+
self.full_attn_logging = full_attn_logging
|
100 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
101 |
+
self.dropout = nn.Dropout(dropout)
|
102 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
103 |
+
self.norm1 = nn.LayerNorm(d_model)
|
104 |
+
self.norm2 = nn.LayerNorm(d_model)
|
105 |
+
self.dropout1 = nn.Dropout(dropout)
|
106 |
+
self.dropout2 = nn.Dropout(dropout)
|
107 |
+
self.activation = F.relu
|
108 |
+
|
109 |
+
def _chunked_attn(
|
110 |
+
self, src: torch.Tensor, attn_mask: Optional[torch.Tensor] = None
|
111 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
112 |
+
"""Perform memory-efficient chunked self attention with overlap."""
|
113 |
+
T, B, D = src.shape
|
114 |
+
|
115 |
+
# Early return for small sequences
|
116 |
+
if T <= 128 or self.chunk_size is None or self.chunk_size >= T:
|
117 |
+
return self._full_attn(src, attn_mask)
|
118 |
+
|
119 |
+
src_b = src.transpose(0, 1) # [B, T, D]
|
120 |
+
C = self.chunk_size
|
121 |
+
O = self.overlap
|
122 |
+
n_chunks = (T + C - 1) // C
|
123 |
+
pad_len = n_chunks * C - T
|
124 |
+
|
125 |
+
# Process chunks with gradient checkpointing for memory efficiency
|
126 |
+
outputs = []
|
127 |
+
weights_list = []
|
128 |
+
|
129 |
+
# Use memory-efficient processing
|
130 |
+
with torch.cuda.amp.autocast(enabled=torch.cuda.is_available()):
|
131 |
+
for chunk_idx in range(n_chunks):
|
132 |
+
start_idx = chunk_idx * C
|
133 |
+
end_idx = min(start_idx + C + 2 * O, T + O)
|
134 |
+
|
135 |
+
# Extract chunk with overlap
|
136 |
+
chunk_start = max(0, start_idx - O)
|
137 |
+
chunk_end = min(T, end_idx)
|
138 |
+
chunk = src_b[:, chunk_start:chunk_end]
|
139 |
+
|
140 |
+
# Pad if necessary
|
141 |
+
if chunk.size(1) < C + 2 * O:
|
142 |
+
pad_size = C + 2 * O - chunk.size(1)
|
143 |
+
chunk = F.pad(chunk, (0, 0, 0, pad_size))
|
144 |
+
|
145 |
+
chunk_len = chunk.size(1)
|
146 |
+
mask = get_tri_mask(chunk_len, src.device) if attn_mask is not None else None
|
147 |
+
|
148 |
+
# Apply attention to chunk
|
149 |
+
out, weights = self.self_attn(
|
150 |
+
chunk, chunk, chunk,
|
151 |
+
attn_mask=mask,
|
152 |
+
need_weights=self.full_attn_logging,
|
153 |
+
average_attn_weights=False,
|
154 |
+
)
|
155 |
+
|
156 |
+
# Extract the core part (remove overlap)
|
157 |
+
core_start = O if chunk_idx > 0 else 0
|
158 |
+
core_end = core_start + min(C, T - start_idx)
|
159 |
+
outputs.append(out[:, core_start:core_end])
|
160 |
+
|
161 |
+
if self.full_attn_logging and weights is not None:
|
162 |
+
weights_list.append(weights[:, :, core_start:core_end])
|
163 |
+
|
164 |
+
# Clear intermediate tensors to save memory
|
165 |
+
del out, weights, chunk
|
166 |
+
if torch.cuda.is_available():
|
167 |
+
torch.cuda.empty_cache()
|
168 |
+
|
169 |
+
# Concatenate outputs
|
170 |
+
seq = torch.cat(outputs, dim=1)
|
171 |
+
|
172 |
+
# Handle attention weights
|
173 |
+
if self.full_attn_logging and weights_list:
|
174 |
+
# Use sparse representation for large sequences
|
175 |
+
if T > 1024:
|
176 |
+
attn_out = torch.empty(0, device=src.device) # Skip full attention for very long sequences
|
177 |
+
else:
|
178 |
+
attn_out = torch.cat(weights_list, dim=2)
|
179 |
+
else:
|
180 |
+
attn_out = torch.empty(0, device=src.device)
|
181 |
+
|
182 |
+
return seq.transpose(0, 1), attn_out
|
183 |
+
|
184 |
+
def _full_attn(self, src: torch.Tensor, attn_mask: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, torch.Tensor]:
|
185 |
+
"""Standard full attention for smaller sequences."""
|
186 |
+
qkv = src.transpose(0, 1)
|
187 |
+
attn_output, attn_weights = self.self_attn(
|
188 |
+
qkv, qkv, qkv,
|
189 |
+
attn_mask=attn_mask,
|
190 |
+
need_weights=True,
|
191 |
+
average_attn_weights=False,
|
192 |
+
)
|
193 |
+
return attn_output.transpose(0, 1), attn_weights
|
194 |
+
|
195 |
+
def forward(
|
196 |
+
self, src: torch.Tensor, attn_mask: Optional[torch.Tensor] = None
|
197 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
198 |
+
"""Return output and attention map."""
|
199 |
+
if self.chunk_size is not None:
|
200 |
+
attn_output, attn_weights = self._chunked_attn(src, attn_mask)
|
201 |
+
else:
|
202 |
+
qkv = src.transpose(0, 1)
|
203 |
+
attn_output, attn_weights = self.self_attn(
|
204 |
+
qkv,
|
205 |
+
qkv,
|
206 |
+
qkv,
|
207 |
+
attn_mask=attn_mask,
|
208 |
+
need_weights=True,
|
209 |
+
average_attn_weights=False,
|
210 |
+
)
|
211 |
+
attn_output = attn_output.transpose(0, 1)
|
212 |
+
src = src + self.dropout1(attn_output)
|
213 |
+
src = self.norm1(src)
|
214 |
+
out = self.linear2(self.dropout(self.activation(self.linear1(src))))
|
215 |
+
src = src + self.dropout2(out)
|
216 |
+
src = self.norm2(src)
|
217 |
+
return src, attn_weights.detach()
|
218 |
+
|
219 |
+
|
220 |
+
class ReversibleLoggingTransformerEncoderLayer(nn.Module):
|
221 |
+
"""Reversible transformer encoder layer with checkpointing."""
|
222 |
+
|
223 |
+
def __init__(
|
224 |
+
self,
|
225 |
+
d_model: int,
|
226 |
+
nhead: int,
|
227 |
+
dim_feedforward: int = 512,
|
228 |
+
dropout: float = 0.1,
|
229 |
+
chunk_size: Optional[int] = None,
|
230 |
+
overlap: int = 0,
|
231 |
+
full_attn_logging: Optional[bool] = None,
|
232 |
+
) -> None:
|
233 |
+
super().__init__()
|
234 |
+
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=True)
|
235 |
+
self.chunk_size = chunk_size
|
236 |
+
self.overlap = overlap
|
237 |
+
if full_attn_logging is None:
|
238 |
+
full_attn_logging = False if chunk_size is not None else True
|
239 |
+
self.full_attn_logging = full_attn_logging
|
240 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
241 |
+
self.dropout = nn.Dropout(dropout)
|
242 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
243 |
+
self.norm1 = nn.LayerNorm(d_model)
|
244 |
+
self.norm2 = nn.LayerNorm(d_model)
|
245 |
+
self.dropout1 = nn.Dropout(dropout)
|
246 |
+
self.dropout2 = nn.Dropout(dropout)
|
247 |
+
self.activation = F.relu
|
248 |
+
|
249 |
+
@compile_fn
|
250 |
+
def _sa_block(
|
251 |
+
self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None
|
252 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
253 |
+
if self.chunk_size is not None:
|
254 |
+
T, B, D = x.shape
|
255 |
+
x_b = x.transpose(0, 1)
|
256 |
+
C = self.chunk_size or T
|
257 |
+
O = self.overlap
|
258 |
+
n_chunks = (T + C - 1) // C
|
259 |
+
pad_len = n_chunks * C - T
|
260 |
+
src_pad = F.pad(x_b, (0, 0, O, pad_len + O))
|
261 |
+
chunk_len = C + 2 * O
|
262 |
+
chunks = src_pad.unfold(1, chunk_len, C)
|
263 |
+
mask = get_tri_mask(chunk_len, x.device) if attn_mask is not None else None
|
264 |
+
out, weights = self.self_attn(
|
265 |
+
chunks.reshape(B * n_chunks, chunk_len, D),
|
266 |
+
chunks.reshape(B * n_chunks, chunk_len, D),
|
267 |
+
chunks.reshape(B * n_chunks, chunk_len, D),
|
268 |
+
attn_mask=mask,
|
269 |
+
need_weights=True,
|
270 |
+
average_attn_weights=False,
|
271 |
+
)
|
272 |
+
out = out.view(B, n_chunks, chunk_len, D)[:, :, O : O + C]
|
273 |
+
weights = weights.view(B, n_chunks, self.self_attn.num_heads, chunk_len, chunk_len)[
|
274 |
+
:, :, :, O : O + C
|
275 |
+
]
|
276 |
+
seq = out.reshape(B, n_chunks * C, D)[:, :T]
|
277 |
+
if self.full_attn_logging and C < T:
|
278 |
+
full_attn = torch.zeros(
|
279 |
+
B, self.self_attn.num_heads, n_chunks * C, n_chunks * C, device=x.device
|
280 |
+
)
|
281 |
+
for idx in range(n_chunks):
|
282 |
+
s = idx * C
|
283 |
+
start = max(s - O, 0)
|
284 |
+
end = min(s + C, n_chunks * C)
|
285 |
+
src_start = O - (s - start)
|
286 |
+
src_end = src_start + (end - start)
|
287 |
+
full_attn[:, :, s : s + C, start:end] = weights[
|
288 |
+
:, idx, :, src_start:src_end
|
289 |
+
]
|
290 |
+
full_attn = full_attn[:, :, :T, :T]
|
291 |
+
weights = full_attn.detach()
|
292 |
+
else:
|
293 |
+
weights = torch.empty(0, device=x.device)
|
294 |
+
attn_out = seq.transpose(0, 1)
|
295 |
+
else:
|
296 |
+
qkv = x.transpose(0, 1)
|
297 |
+
attn_out, weights = self.self_attn(
|
298 |
+
qkv,
|
299 |
+
qkv,
|
300 |
+
qkv,
|
301 |
+
attn_mask=attn_mask,
|
302 |
+
need_weights=True,
|
303 |
+
average_attn_weights=False,
|
304 |
+
)
|
305 |
+
attn_out = attn_out.transpose(0, 1)
|
306 |
+
x = self.norm1(x + self.dropout1(attn_out))
|
307 |
+
return x, weights.detach()
|
308 |
+
|
309 |
+
@compile_fn
|
310 |
+
def _ff_block(self, x: torch.Tensor) -> torch.Tensor:
|
311 |
+
out = self.linear2(self.dropout(self.activation(self.linear1(x))))
|
312 |
+
x = self.norm2(x + self.dropout2(out))
|
313 |
+
return x
|
314 |
+
|
315 |
+
def forward(
|
316 |
+
self,
|
317 |
+
x1: torch.Tensor,
|
318 |
+
x2: torch.Tensor,
|
319 |
+
attn_mask: Optional[torch.Tensor] = None,
|
320 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
321 |
+
y1, weights = self._sa_block(x2, attn_mask)
|
322 |
+
y1 = x1 + y1
|
323 |
+
y2 = x2 + self._ff_block(y1)
|
324 |
+
return y1, y2, weights
|
325 |
+
|
326 |
+
|
327 |
+
class BitTransformerLM(nn.Module):
|
328 |
+
"""Transformer language model that operates on raw bits (0/1) with telemetry."""
|
329 |
+
|
330 |
+
def __init__(
|
331 |
+
self,
|
332 |
+
d_model: int = 128,
|
333 |
+
nhead: int = 8,
|
334 |
+
num_layers: int = 4,
|
335 |
+
dim_feedforward: int = 512,
|
336 |
+
max_seq_len: int = 1024,
|
337 |
+
lambda_K: float = 1.0,
|
338 |
+
lambda_C: float = 1.0,
|
339 |
+
lambda_S: float = 1.0,
|
340 |
+
reversible: bool = False,
|
341 |
+
use_checkpoint: bool = True,
|
342 |
+
use_autocast: bool = False,
|
343 |
+
use_act: bool = False,
|
344 |
+
act_threshold: float = 0.9,
|
345 |
+
chunk_size: Optional[int] = None,
|
346 |
+
overlap: int = 0,
|
347 |
+
full_attn_logging: Optional[bool] = None,
|
348 |
+
) -> None:
|
349 |
+
"""Create a BitTransformer language model.
|
350 |
+
|
351 |
+
Args:
|
352 |
+
full_attn_logging: When ``False`` and ``chunk_size`` is
|
353 |
+
smaller than the sequence length, the model skips
|
354 |
+
reconstructing the full ``T×T`` attention matrices for
|
355 |
+
telemetry to reduce memory use.
|
356 |
+
"""
|
357 |
+
super().__init__()
|
358 |
+
self.d_model = d_model
|
359 |
+
self.num_layers = num_layers
|
360 |
+
self.lambda_K = lambda_K
|
361 |
+
self.lambda_C = lambda_C
|
362 |
+
self.lambda_S = lambda_S
|
363 |
+
self.reversible = reversible
|
364 |
+
self.use_checkpoint = use_checkpoint
|
365 |
+
self.use_autocast = use_autocast
|
366 |
+
self.use_act = use_act
|
367 |
+
self.act_threshold = act_threshold
|
368 |
+
self.chunk_size = chunk_size
|
369 |
+
self.overlap = overlap
|
370 |
+
if full_attn_logging is None:
|
371 |
+
full_attn_logging = False if chunk_size is not None else True
|
372 |
+
self.full_attn_logging = full_attn_logging
|
373 |
+
|
374 |
+
# Bit embedding: two possible input values
|
375 |
+
self.embedding = nn.Embedding(2, d_model)
|
376 |
+
self.pos_enc = PositionalEncoding(d_model, max_len=max_seq_len)
|
377 |
+
|
378 |
+
layer_cls = (
|
379 |
+
ReversibleLoggingTransformerEncoderLayer
|
380 |
+
if reversible
|
381 |
+
else LoggingTransformerEncoderLayer
|
382 |
+
)
|
383 |
+
self.layers = nn.ModuleList(
|
384 |
+
[
|
385 |
+
layer_cls(
|
386 |
+
d_model=d_model,
|
387 |
+
nhead=nhead,
|
388 |
+
dim_feedforward=dim_feedforward,
|
389 |
+
chunk_size=chunk_size,
|
390 |
+
overlap=overlap,
|
391 |
+
full_attn_logging=full_attn_logging,
|
392 |
+
)
|
393 |
+
for _ in range(num_layers)
|
394 |
+
]
|
395 |
+
)
|
396 |
+
|
397 |
+
if self.use_act:
|
398 |
+
self.halt_projs = nn.ModuleList(
|
399 |
+
[nn.Linear(d_model, 1) for _ in range(num_layers)]
|
400 |
+
)
|
401 |
+
|
402 |
+
self.out_head = nn.Linear(d_model, 2) # output logits for bit=0 or bit=1
|
403 |
+
|
404 |
+
def expand_positional_encoding(self, new_len: int) -> None:
|
405 |
+
"""Expand positional encoding to at least ``new_len``."""
|
406 |
+
cur_len = self.pos_enc.pe.size(0)
|
407 |
+
if new_len <= cur_len:
|
408 |
+
return
|
409 |
+
device = self.pos_enc.pe.device
|
410 |
+
d_model = self.d_model
|
411 |
+
pe = torch.zeros(new_len, d_model, device=device)
|
412 |
+
pe[:cur_len] = self.pos_enc.pe.squeeze(1)
|
413 |
+
pos = torch.arange(cur_len, new_len, dtype=torch.float32, device=device).unsqueeze(1)
|
414 |
+
inv = torch.exp(torch.arange(0, d_model, 2, device=device).float() * -(math.log(10000.0) / d_model))
|
415 |
+
pe[cur_len:, 0::2] = torch.sin(pos * inv)
|
416 |
+
pe[cur_len:, 1::2] = torch.cos(pos * inv)
|
417 |
+
self.pos_enc.pe = pe.unsqueeze(1)
|
418 |
+
|
419 |
+
def set_lambdas(self, lambda_K: float, lambda_C: float, lambda_S: float) -> None:
|
420 |
+
"""Update weighting coefficients for telemetry metrics."""
|
421 |
+
self.lambda_K = lambda_K
|
422 |
+
self.lambda_C = lambda_C
|
423 |
+
self.lambda_S = lambda_S
|
424 |
+
|
425 |
+
def _maybe_decompress(self, codes: torch.Tensor) -> torch.Tensor:
|
426 |
+
"""Return raw bit sequences, decompressing if input appears run-length encoded."""
|
427 |
+
if codes.dim() <= 1:
|
428 |
+
return codes
|
429 |
+
needs_decompress = codes.max().item() > 1
|
430 |
+
if not needs_decompress and codes.size(1) % 2 == 0:
|
431 |
+
vals = codes[:, 0::2]
|
432 |
+
if torch.all(vals[:, 1:] != vals[:, :-1]):
|
433 |
+
needs_decompress = True
|
434 |
+
if not needs_decompress:
|
435 |
+
return codes
|
436 |
+
seqs = [decompress_bits(row.to(torch.uint8)) for row in codes]
|
437 |
+
max_len = max(seq.numel() for seq in seqs)
|
438 |
+
padded = [F.pad(seq, (0, max_len - seq.numel())) for seq in seqs]
|
439 |
+
return torch.stack(padded)
|
440 |
+
|
441 |
+
def negentropy_kpi(self, codes: torch.Tensor) -> torch.Tensor:
|
442 |
+
"""Approximate negentropy of bit sequences.
|
443 |
+
|
444 |
+
Returns a value in ``[0, 1]`` where ``1`` denotes a perfectly ordered
|
445 |
+
sequence (all zeros or ones) and ``0`` reflects maximal entropy.
|
446 |
+
"""
|
447 |
+
codes = self._maybe_decompress(codes)
|
448 |
+
p = codes.float().mean(dim=1)
|
449 |
+
entropy = -(p * torch.log(p + 1e-9) + (1 - p) * torch.log(1 - p + 1e-9))
|
450 |
+
max_e = math.log(2.0)
|
451 |
+
return 1 - entropy / max_e
|
452 |
+
|
453 |
+
def lz_complexity(self, codes: torch.Tensor) -> torch.Tensor:
|
454 |
+
"""Differentiable proxy for Lempel–Ziv complexity.
|
455 |
+
|
456 |
+
Values near ``0`` indicate highly compressible sequences while values
|
457 |
+
approaching ``1`` correspond to rapid bit alternation.
|
458 |
+
"""
|
459 |
+
codes = self._maybe_decompress(codes)
|
460 |
+
diffs = torch.abs(codes[:, 1:] - codes[:, :-1])
|
461 |
+
return diffs.float().mean(dim=1)
|
462 |
+
|
463 |
+
def negentropy_logits(self, logits: torch.Tensor, detach: bool = True) -> torch.Tensor:
|
464 |
+
"""Negentropy computed from model logits.
|
465 |
+
|
466 |
+
Parameters
|
467 |
+
----------
|
468 |
+
logits: ``torch.Tensor``
|
469 |
+
Logit tensor of shape ``(B, T, 2)``.
|
470 |
+
detach: bool, default ``True``
|
471 |
+
When ``True`` the computation is detached from the autograd graph.
|
472 |
+
"""
|
473 |
+
assert logits.dim() == 3 and logits.size(-1) == 2, "logits must be [B,T,2]"
|
474 |
+
prob = logits.softmax(-1)
|
475 |
+
if detach:
|
476 |
+
prob = prob.detach()
|
477 |
+
p = prob[..., 1].mean(dim=1)
|
478 |
+
entropy = -(p * torch.log(p + 1e-9) + (1 - p) * torch.log(1 - p + 1e-9))
|
479 |
+
max_e = math.log(2.0)
|
480 |
+
return 1 - entropy / max_e
|
481 |
+
|
482 |
+
def lz_complexity_logits(self, logits: torch.Tensor, detach: bool = True) -> torch.Tensor:
|
483 |
+
"""LZ complexity proxy computed from logits.
|
484 |
+
|
485 |
+
Parameters
|
486 |
+
----------
|
487 |
+
logits: ``torch.Tensor``
|
488 |
+
Logit tensor of shape ``(B, T, 2)``.
|
489 |
+
detach: bool, default ``True``
|
490 |
+
When ``True`` the computation is detached from the autograd graph.
|
491 |
+
"""
|
492 |
+
assert logits.dim() == 3 and logits.size(-1) == 2, "logits must be [B,T,2]"
|
493 |
+
prob = logits.softmax(-1)
|
494 |
+
if detach:
|
495 |
+
prob = prob.detach()
|
496 |
+
prob1 = prob[..., 1]
|
497 |
+
diffs = torch.abs(prob1[:, 1:] - prob1[:, :-1])
|
498 |
+
return diffs.mean(dim=1)
|
499 |
+
|
500 |
+
def symbiosis_kl_logits(
|
501 |
+
self, logits: torch.Tensor, ref_prob: float = 0.5, detach: bool = True
|
502 |
+
) -> torch.Tensor:
|
503 |
+
"""Symbiosis score from KL divergence to a reference distribution.
|
504 |
+
|
505 |
+
Returns a value in ``[0, 1]`` with ``1`` meaning perfect agreement with
|
506 |
+
the reference distribution and ``0`` indicating maximal divergence.
|
507 |
+
"""
|
508 |
+
assert logits.dim() == 3 and logits.size(-1) == 2, "logits must be [B,T,2]"
|
509 |
+
probs = logits.softmax(-1)
|
510 |
+
if detach:
|
511 |
+
probs = probs.detach()
|
512 |
+
ref = torch.tensor([1 - ref_prob, ref_prob], device=logits.device)
|
513 |
+
kl = (probs * (probs.clamp_min(1e-9).log() - ref.log())).sum(-1).mean(dim=1)
|
514 |
+
max_kl = math.log(2.0)
|
515 |
+
return 1 - kl / max_kl
|
516 |
+
|
517 |
+
def _act_step(
|
518 |
+
self,
|
519 |
+
hidden: torch.Tensor,
|
520 |
+
idx: int,
|
521 |
+
halt_prob: torch.Tensor,
|
522 |
+
act_state: torch.Tensor,
|
523 |
+
halt_history: List[torch.Tensor],
|
524 |
+
) -> Tuple[torch.Tensor, torch.Tensor, bool]:
|
525 |
+
"""Apply one step of ACT halting logic."""
|
526 |
+
p = torch.sigmoid(self.halt_projs[idx](hidden))
|
527 |
+
delta = (1 - halt_prob) * p
|
528 |
+
halt_prob = halt_prob + delta
|
529 |
+
act_state = act_state + hidden * delta
|
530 |
+
halt_history.append(halt_prob.detach())
|
531 |
+
min_prob = halt_prob.detach().min()
|
532 |
+
if dist.is_initialized():
|
533 |
+
dist.all_reduce(min_prob, op=dist.ReduceOp.MIN)
|
534 |
+
return halt_prob, act_state, min_prob.item() >= self.act_threshold
|
535 |
+
|
536 |
+
def forward(
|
537 |
+
self, bit_seq: torch.Tensor, causal: bool = True
|
538 |
+
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
|
539 |
+
"""Forward pass returning logits and telemetry from the same graph.
|
540 |
+
|
541 |
+
By default the model uses causal masking and (optional) chunked
|
542 |
+
attention. When ``causal`` is ``False`` the model operates in
|
543 |
+
"Diffusion LM" mode. In this mode chunked attention is temporarily
|
544 |
+
disabled so that every token can attend to the full sequence
|
545 |
+
bidirectionally. The original chunking configuration is restored after
|
546 |
+
the forward pass.
|
547 |
+
"""
|
548 |
+
|
549 |
+
# Disable chunking when running in bidirectional (non-causal) mode
|
550 |
+
orig_chunks = None
|
551 |
+
orig_model_chunk = None
|
552 |
+
if not causal and self.chunk_size is not None:
|
553 |
+
orig_model_chunk = self.chunk_size
|
554 |
+
orig_chunks = [layer.chunk_size for layer in self.layers]
|
555 |
+
self.chunk_size = None
|
556 |
+
for layer in self.layers:
|
557 |
+
layer.chunk_size = None
|
558 |
+
|
559 |
+
try:
|
560 |
+
ctx = cpu_autocast() if self.use_autocast else contextlib.nullcontext()
|
561 |
+
with ctx:
|
562 |
+
x = self.embedding(bit_seq).transpose(0, 1) * math.sqrt(self.d_model)
|
563 |
+
x = self.pos_enc(x)
|
564 |
+
|
565 |
+
attn_mask = get_tri_mask(x.size(0), x.device) if causal else None
|
566 |
+
|
567 |
+
activations: List[torch.Tensor] = []
|
568 |
+
attn_maps: List[torch.Tensor] = []
|
569 |
+
halt_history: List[torch.Tensor] = []
|
570 |
+
if self.use_act:
|
571 |
+
halt_prob = torch.zeros(x.size(0), x.size(1), 1, device=x.device)
|
572 |
+
act_state = torch.zeros_like(x)
|
573 |
+
if self.reversible:
|
574 |
+
x1, x2 = x, x
|
575 |
+
for idx, layer in enumerate(self.layers):
|
576 |
+
if self.use_checkpoint:
|
577 |
+
x1, x2, attn = checkpoint.checkpoint(
|
578 |
+
layer, x1, x2, attn_mask
|
579 |
+
)
|
580 |
+
else:
|
581 |
+
x1, x2, attn = layer(x1, x2, attn_mask)
|
582 |
+
combined = (x1 + x2) / 2
|
583 |
+
activations.append(combined)
|
584 |
+
if attn.numel() > 0:
|
585 |
+
attn_maps.append(attn)
|
586 |
+
if self.use_act:
|
587 |
+
halt_prob, act_state, should_break = self._act_step(
|
588 |
+
combined, idx, halt_prob, act_state, halt_history
|
589 |
+
)
|
590 |
+
if should_break:
|
591 |
+
break
|
592 |
+
x = (x1 + x2) / 2
|
593 |
+
else:
|
594 |
+
for idx, layer in enumerate(self.layers):
|
595 |
+
if self.use_checkpoint:
|
596 |
+
x, attn = checkpoint.checkpoint(layer, x, attn_mask)
|
597 |
+
else:
|
598 |
+
x, attn = layer(x, attn_mask)
|
599 |
+
activations.append(x)
|
600 |
+
if attn.numel() > 0:
|
601 |
+
attn_maps.append(attn)
|
602 |
+
if self.use_act:
|
603 |
+
halt_prob, act_state, should_break = self._act_step(
|
604 |
+
x, idx, halt_prob, act_state, halt_history
|
605 |
+
)
|
606 |
+
if should_break:
|
607 |
+
break
|
608 |
+
if self.use_act:
|
609 |
+
act_state = act_state + x * (1 - halt_prob)
|
610 |
+
x = act_state
|
611 |
+
logits = self.out_head(x)
|
612 |
+
|
613 |
+
# Per-layer entropy of activations
|
614 |
+
entropies = []
|
615 |
+
for act in activations:
|
616 |
+
prob = act.softmax(-1)
|
617 |
+
ent = -(prob * prob.clamp_min(1e-9).log()).sum(-1).mean()
|
618 |
+
entropies.append(ent)
|
619 |
+
|
620 |
+
attn_entropies = []
|
621 |
+
for attn in attn_maps:
|
622 |
+
prob = attn # weights are already softmaxed
|
623 |
+
ent = -(prob * prob.clamp_min(1e-9).log()).sum(-1)
|
624 |
+
ent = ent.mean(1)
|
625 |
+
attn_entropies.append(ent)
|
626 |
+
if attn_entropies:
|
627 |
+
attn_entropy_map = torch.stack(attn_entropies).mean(0)
|
628 |
+
else:
|
629 |
+
attn_entropy_map = torch.zeros(
|
630 |
+
bit_seq.size(0), bit_seq.size(1), device=bit_seq.device
|
631 |
+
)
|
632 |
+
max_ent = math.log(attn_entropy_map.size(-1))
|
633 |
+
attn_entropy_map = attn_entropy_map / max_ent
|
634 |
+
attn_entropy = attn_entropy_map.mean(1)
|
635 |
+
|
636 |
+
logits_bt = logits.transpose(0, 1)
|
637 |
+
negentropy_in = self.negentropy_kpi(bit_seq)
|
638 |
+
lz_in = self.lz_complexity(bit_seq.float())
|
639 |
+
negentropy_logits_b = self.negentropy_logits(logits_bt, detach=False)
|
640 |
+
lz_logits_b = self.lz_complexity_logits(logits_bt, detach=False)
|
641 |
+
kl_div_b = self.symbiosis_kl_logits(logits_bt, detach=False)
|
642 |
+
|
643 |
+
raw_sym = (
|
644 |
+
(self.lambda_K * negentropy_logits_b + self.lambda_C * lz_logits_b) / 2
|
645 |
+
+ negentropy_logits_b * lz_logits_b
|
646 |
+
- self.lambda_S * kl_div_b
|
647 |
+
- 0.1 * attn_entropy
|
648 |
+
)
|
649 |
+
weight_norm = torch.stack([p.norm() for p in self.parameters()]).mean().detach()
|
650 |
+
raw_sym = raw_sym - 0.01 * weight_norm
|
651 |
+
sym_score = torch.sigmoid(raw_sym)
|
652 |
+
|
653 |
+
B, T = bit_seq.shape
|
654 |
+
assert logits_bt.shape[:2] == (B, T)
|
655 |
+
assert attn_entropy_map.shape == (B, T)
|
656 |
+
|
657 |
+
telemetry = {
|
658 |
+
"activations": activations,
|
659 |
+
"attention_maps": attn_maps,
|
660 |
+
"attention_entropy": attn_entropy_map,
|
661 |
+
"entropy": entropies,
|
662 |
+
"attention_entropy_mean": attn_entropy,
|
663 |
+
"negentropy_input": negentropy_in.detach(),
|
664 |
+
"lz_complexity_input": lz_in.detach(),
|
665 |
+
"negentropy_logits": negentropy_logits_b.detach(),
|
666 |
+
"lz_complexity_logits": lz_logits_b.detach(),
|
667 |
+
"symbiosis_kl": kl_div_b.detach(),
|
668 |
+
"symbiosis_score": sym_score.detach(),
|
669 |
+
}
|
670 |
+
if self.use_act:
|
671 |
+
telemetry["halt_probs"] = halt_history
|
672 |
+
|
673 |
+
return logits_bt, telemetry
|
674 |
+
finally:
|
675 |
+
if orig_chunks is not None:
|
676 |
+
self.chunk_size = orig_model_chunk
|
677 |
+
for layer, chunk in zip(self.layers, orig_chunks):
|
678 |
+
layer.chunk_size = chunk
|
679 |
+
|
680 |
+
def forward_compressed(
|
681 |
+
self, compressed_bits, causal: bool = True
|
682 |
+
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
|
683 |
+
"""Decompress bit sequences then run the normal forward pass."""
|
684 |
+
if isinstance(compressed_bits, torch.Tensor) and compressed_bits.dim() == 1:
|
685 |
+
sequences = [decompress_bits(compressed_bits).to(torch.long)]
|
686 |
+
else:
|
687 |
+
sequences = [decompress_bits(c).to(torch.long) for c in compressed_bits]
|
688 |
+
lengths = [seq.numel() for seq in sequences]
|
689 |
+
if len(set(lengths)) != 1:
|
690 |
+
raise ValueError("Sequences decompress to different lengths")
|
691 |
+
bits = torch.stack(sequences)
|
692 |
+
return self.forward(bits, causal=causal)
|
693 |
+
|
694 |
+
def _current_params(self) -> Dict:
|
695 |
+
"""Return a dictionary with the current model hyperparameters."""
|
696 |
+
return {
|
697 |
+
"d_model": self.d_model,
|
698 |
+
"nhead": self.layers[0].self_attn.num_heads,
|
699 |
+
"num_layers": self.num_layers,
|
700 |
+
"dim_feedforward": self.layers[0].linear1.out_features,
|
701 |
+
"max_seq_len": self.pos_enc.pe.size(0),
|
702 |
+
"lambda_K": self.lambda_K,
|
703 |
+
"lambda_C": self.lambda_C,
|
704 |
+
"lambda_S": self.lambda_S,
|
705 |
+
"reversible": self.reversible,
|
706 |
+
"use_checkpoint": self.use_checkpoint,
|
707 |
+
"use_autocast": self.use_autocast,
|
708 |
+
"use_act": self.use_act,
|
709 |
+
"act_threshold": self.act_threshold,
|
710 |
+
"chunk_size": self.chunk_size,
|
711 |
+
"overlap": self.overlap,
|
712 |
+
}
|
713 |
+
|
714 |
+
def double_width(self) -> "BitTransformerLM":
|
715 |
+
"""Return a copy of the model with doubled hidden size."""
|
716 |
+
from .scale import expand_model
|
717 |
+
|
718 |
+
params = self._current_params()
|
719 |
+
params["d_model"] *= 2
|
720 |
+
params["dim_feedforward"] *= 2
|
721 |
+
return expand_model(self, params)
|
722 |
+
|
723 |
+
def double_layers(self) -> "BitTransformerLM":
|
724 |
+
"""Return a copy of the model with twice as many layers."""
|
725 |
+
from .scale import expand_model
|
726 |
+
|
727 |
+
params = self._current_params()
|
728 |
+
params["num_layers"] *= 2
|
729 |
+
return expand_model(self, params)
|
730 |
+
|
731 |
+
def double_length(self) -> "BitTransformerLM":
|
732 |
+
"""Return a copy of the model with doubled maximum sequence length."""
|
733 |
+
from .scale import expand_model
|
734 |
+
|
735 |
+
params = self._current_params()
|
736 |
+
params["max_seq_len"] *= 2
|
737 |
+
params["chunk_size"] = params["max_seq_len"]
|
738 |
+
return expand_model(self, params)
|
739 |
+
|
740 |
+
def train_full_sequence(
|
741 |
+
self,
|
742 |
+
bits: torch.Tensor,
|
743 |
+
*,
|
744 |
+
ctx_bits: int = 4096,
|
745 |
+
detach_every_n: int = 1_048_576,
|
746 |
+
) -> float:
|
747 |
+
"""Train on a long bit tensor using sliding windows.
|
748 |
+
|
749 |
+
Parameters
|
750 |
+
----------
|
751 |
+
bits: ``torch.Tensor``
|
752 |
+
1D tensor containing the full bit sequence.
|
753 |
+
ctx_bits: int
|
754 |
+
Size of the training context window.
|
755 |
+
detach_every_n: int
|
756 |
+
Interval in bits for optimizer updates and graph detachment.
|
757 |
+
Returns
|
758 |
+
-------
|
759 |
+
float
|
760 |
+
Mean loss over all windows.
|
761 |
+
"""
|
762 |
+
self.train()
|
763 |
+
optimizer, scheduler = configure_optimizer(
|
764 |
+
self, lr=1e-3, total_steps=max(1, bits.numel() // ctx_bits)
|
765 |
+
)
|
766 |
+
accum = 0
|
767 |
+
total_loss = 0.0
|
768 |
+
count = 0
|
769 |
+
for start in range(0, bits.numel() - ctx_bits - 1, ctx_bits):
|
770 |
+
segment = bits[start : start + ctx_bits + 1].unsqueeze(0)
|
771 |
+
logits, _ = self(segment)
|
772 |
+
pred = logits[:, :-1, :].reshape(-1, 2)
|
773 |
+
target = segment[:, 1:].reshape(-1)
|
774 |
+
loss = F.cross_entropy(pred, target)
|
775 |
+
loss.backward()
|
776 |
+
accum += ctx_bits
|
777 |
+
total_loss += loss.item()
|
778 |
+
count += 1
|
779 |
+
if accum >= detach_every_n:
|
780 |
+
torch.nn.utils.clip_grad_norm_(self.parameters(), 1.0)
|
781 |
+
optimizer.step()
|
782 |
+
scheduler.step()
|
783 |
+
optimizer.zero_grad()
|
784 |
+
accum = 0
|
785 |
+
if accum > 0:
|
786 |
+
torch.nn.utils.clip_grad_norm_(self.parameters(), 1.0)
|
787 |
+
optimizer.step()
|
788 |
+
scheduler.step()
|
789 |
+
optimizer.zero_grad()
|
790 |
+
return total_loss / max(1, count)
|
791 |
+
|
792 |
+
|
793 |
+
def infer_long_sequence(
|
794 |
+
model: BitTransformerLM,
|
795 |
+
bits: torch.Tensor,
|
796 |
+
*,
|
797 |
+
ctx_bits: int = 4096,
|
798 |
+
overlap: int = 256,
|
799 |
+
) -> Tuple[torch.Tensor, List[Dict[str, torch.Tensor]]]:
|
800 |
+
"""Infer a long bit sequence using sliding windows with overlap."""
|
801 |
+
model.eval()
|
802 |
+
device = next(model.parameters()).device
|
803 |
+
bits = bits.to(device)
|
804 |
+
step = ctx_bits - overlap
|
805 |
+
outputs: List[torch.Tensor] = []
|
806 |
+
logs: List[Dict[str, torch.Tensor]] = []
|
807 |
+
for start in range(0, bits.numel(), step):
|
808 |
+
window = bits[start : start + ctx_bits].unsqueeze(0)
|
809 |
+
logits, tele = model(window, causal=True)
|
810 |
+
pred = logits.argmax(-1).squeeze(0)
|
811 |
+
outputs.append(pred)
|
812 |
+
logs.append(tele)
|
813 |
+
out = torch.cat(outputs)[: bits.numel()]
|
814 |
+
return out, logs
|
815 |
+
|
816 |
+
|
817 |
+
def diffusion_inference(
|
818 |
+
model: BitTransformerLM,
|
819 |
+
*,
|
820 |
+
length: int,
|
821 |
+
steps: int = 8,
|
822 |
+
batch_size: int = 1,
|
823 |
+
init_bits: Optional[torch.Tensor] = None,
|
824 |
+
schedule: str = "linear",
|
825 |
+
) -> torch.Tensor:
|
826 |
+
"""Generate bit sequences using iterative denoising diffusion.
|
827 |
+
|
828 |
+
Parameters
|
829 |
+
----------
|
830 |
+
model: ``BitTransformerLM``
|
831 |
+
The model used for denoising. It is run in non-causal mode with
|
832 |
+
chunked attention disabled, enabling full-context bidirectional
|
833 |
+
attention.
|
834 |
+
length: int
|
835 |
+
Length of the bit sequences to generate.
|
836 |
+
steps: int, default ``8``
|
837 |
+
Number of denoising iterations. More steps generally yield sharper
|
838 |
+
samples at the cost of compute.
|
839 |
+
batch_size: int, default ``1``
|
840 |
+
Number of sequences to generate in parallel.
|
841 |
+
init_bits: ``torch.Tensor`` | ``None``
|
842 |
+
Optional initial noisy bits of shape ``(batch_size, length)``. When
|
843 |
+
``None`` random noise is used.
|
844 |
+
schedule: str, default ``"linear"``
|
845 |
+
Noise schedule for the denoising mask probability. Options are
|
846 |
+
``"linear"``, ``"cosine"``, and ``"exp"``.
|
847 |
+
|
848 |
+
Returns
|
849 |
+
-------
|
850 |
+
``torch.Tensor``
|
851 |
+
A tensor of shape ``(batch_size, length)`` containing generated bits.
|
852 |
+
"""
|
853 |
+
|
854 |
+
model.eval()
|
855 |
+
device = next(model.parameters()).device
|
856 |
+
if init_bits is None:
|
857 |
+
bits = torch.randint(0, 2, (batch_size, length), device=device)
|
858 |
+
else:
|
859 |
+
bits = init_bits.to(device)
|
860 |
+
if bits.shape != (batch_size, length):
|
861 |
+
raise ValueError("init_bits must have shape (batch_size, length)")
|
862 |
+
|
863 |
+
for step in range(steps):
|
864 |
+
logits, _ = model(bits, causal=False)
|
865 |
+
prob = logits.softmax(-1)[..., 1]
|
866 |
+
t = (step + 1) / steps
|
867 |
+
if schedule == "linear":
|
868 |
+
mask_prob = 1.0 - t
|
869 |
+
elif schedule == "cosine":
|
870 |
+
mask_prob = math.cos(math.pi * t / 2)
|
871 |
+
elif schedule == "exp":
|
872 |
+
mask_prob = math.exp(-5 * t)
|
873 |
+
else:
|
874 |
+
raise ValueError(f"unknown schedule: {schedule}")
|
875 |
+
mask = (torch.rand_like(bits.float()) < mask_prob).long()
|
876 |
+
sampled = torch.bernoulli(prob).long()
|
877 |
+
bits = torch.where(mask.bool(), sampled, bits)
|
878 |
+
if bits.shape[-1] % 9 == 0:
|
879 |
+
bits, corrections = enforce_parity(bits)
|
880 |
+
if corrections:
|
881 |
+
logging.info("Parity corrections applied: %d", corrections)
|
882 |
+
try:
|
883 |
+
from .safety import hil_safe_inference
|
884 |
+
|
885 |
+
hil_safe_inference(model, bits, causal=False, strict=False)
|
886 |
+
except RuntimeError as exc:
|
887 |
+
logging.warning("Safety gate warning: %s", exc)
|
888 |
+
return bits
|
889 |
+
|
890 |
+
|
891 |
+
def example_usage() -> float:
|
892 |
+
"""Run the example from the README and return the loss."""
|
893 |
+
B, L = 4, 16
|
894 |
+
model = BitTransformerLM(
|
895 |
+
d_model=64, nhead=4, num_layers=2, dim_feedforward=256, max_seq_len=L
|
896 |
+
)
|
897 |
+
bits = torch.randint(0, 2, (B, L), dtype=torch.long)
|
898 |
+
logits, _ = model(bits)
|
899 |
+
pred = logits[:, :-1, :].reshape(-1, 2)
|
900 |
+
target = bits[:, 1:].reshape(-1)
|
901 |
+
loss = F.cross_entropy(pred, target)
|
902 |
+
return loss.item()
|
903 |
+
|
904 |
+
|
905 |
+
def example_training_step() -> Tuple[float, Dict[str, torch.Tensor]]:
|
906 |
+
"""Demonstrate a training step where metrics do not affect gradients."""
|
907 |
+
B, L = 4, 16
|
908 |
+
model = BitTransformerLM(
|
909 |
+
d_model=32, nhead=4, num_layers=1, dim_feedforward=64, max_seq_len=L
|
910 |
+
)
|
911 |
+
optimizer, scheduler = configure_optimizer(model, lr=1e-3, total_steps=1)
|
912 |
+
|
913 |
+
bits = torch.randint(0, 2, (B, L), dtype=torch.long)
|
914 |
+
logits, telemetry = model(bits)
|
915 |
+
|
916 |
+
pred = logits[:, :-1, :].reshape(-1, 2)
|
917 |
+
target = bits[:, 1:].reshape(-1)
|
918 |
+
loss = F.cross_entropy(pred, target)
|
919 |
+
|
920 |
+
loss.backward()
|
921 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
922 |
+
optimizer.step()
|
923 |
+
scheduler.step()
|
924 |
+
optimizer.zero_grad()
|
925 |
+
return loss.item(), telemetry
|
926 |
+
|
927 |
+
|
928 |
+
if __name__ == "__main__":
|
929 |
+
loss, telemetry = example_training_step()
|
930 |
+
print("Composite loss:", loss)
|
931 |
+
print("Telemetry keys:", list(telemetry.keys()))
|