WCNegentropy commited on
Commit
cf1ded2
·
verified ·
1 Parent(s): cc63976

🚀 Final optimization: Update model.py with production-ready enhancements

Browse files
Files changed (1) hide show
  1. bit_transformer/model.py +931 -0
bit_transformer/model.py ADDED
@@ -0,0 +1,931 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import contextlib
3
+ import logging
4
+ from typing import Dict, List, Tuple, Optional
5
+
6
+ import torch
7
+ import torch.distributed as dist
8
+ import sys
9
+ import torch.nn as nn
10
+ import torch.nn.functional as F
11
+ import torch.utils.checkpoint as checkpoint
12
+
13
+ from .torch_utils import cpu_autocast
14
+
15
+ from .optimization import configure_optimizer
16
+ from .compression import decompress_bits
17
+ from .parity import enforce_parity
18
+
19
+ _mask_cache: Dict[Tuple[int, torch.device], torch.Tensor] = {}
20
+ _attention_cache: Dict[str, torch.Tensor] = {} # For caching attention patterns
21
+ _MAX_CACHE_SIZE = 50 # Limit cache growth
22
+
23
+
24
+ def clear_cache():
25
+ """Clear memory caches to prevent OOM in long sequences."""
26
+ global _mask_cache, _attention_cache
27
+ _mask_cache.clear()
28
+ _attention_cache.clear()
29
+
30
+
31
+ def get_tri_mask(seq_len: int, device: torch.device) -> torch.Tensor:
32
+ """Return or create a cached upper-triangular mask with memory management."""
33
+ key = (seq_len, device)
34
+
35
+ # Clear cache if it gets too large
36
+ if len(_mask_cache) > _MAX_CACHE_SIZE:
37
+ clear_cache()
38
+
39
+ if key not in _mask_cache:
40
+ _mask_cache[key] = torch.triu(
41
+ torch.ones(seq_len, seq_len, device=device, dtype=torch.bool), 1
42
+ )
43
+ return _mask_cache[key]
44
+
45
+ try: # torch.compile may not work on all Python versions
46
+ if torch.__version__ and tuple(map(int, torch.__version__.split(".")[:2])) >= (2, 0) and sys.version_info < (3, 11):
47
+ compile_fn = torch.compile
48
+ else:
49
+ raise RuntimeError
50
+ except Exception: # pragma: no cover - handle missing torch or unsupported version
51
+
52
+ def compile_fn(fn=None, **kwargs):
53
+ if fn is None:
54
+ return lambda f: f
55
+ return fn
56
+
57
+
58
+ class PositionalEncoding(nn.Module):
59
+ """Sinusoidal positional encoding."""
60
+
61
+ def __init__(self, d_model: int, max_len: int = 1024) -> None:
62
+ super().__init__()
63
+ pe = torch.zeros(max_len, d_model)
64
+ pos = torch.arange(0, max_len, dtype=torch.float32).unsqueeze(1)
65
+ inv = torch.exp(
66
+ torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)
67
+ )
68
+ pe[:, 0::2] = torch.sin(pos * inv)
69
+ pe[:, 1::2] = torch.cos(pos * inv)
70
+ self.register_buffer("pe", pe.unsqueeze(1))
71
+
72
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
73
+ """Add positional encoding to input tensor."""
74
+ return x + self.pe[: x.size(0)]
75
+
76
+
77
+ class LoggingTransformerEncoderLayer(nn.Module):
78
+ """Transformer encoder layer that exposes attention weights.
79
+
80
+ It optionally performs chunked attention with a fixed window size.
81
+ """
82
+
83
+ def __init__(
84
+ self,
85
+ d_model: int,
86
+ nhead: int,
87
+ dim_feedforward: int = 512,
88
+ dropout: float = 0.1,
89
+ chunk_size: Optional[int] = None,
90
+ overlap: int = 0,
91
+ full_attn_logging: Optional[bool] = None,
92
+ ) -> None:
93
+ super().__init__()
94
+ self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=True)
95
+ self.chunk_size = chunk_size
96
+ self.overlap = overlap
97
+ if full_attn_logging is None:
98
+ full_attn_logging = False if chunk_size is not None else True
99
+ self.full_attn_logging = full_attn_logging
100
+ self.linear1 = nn.Linear(d_model, dim_feedforward)
101
+ self.dropout = nn.Dropout(dropout)
102
+ self.linear2 = nn.Linear(dim_feedforward, d_model)
103
+ self.norm1 = nn.LayerNorm(d_model)
104
+ self.norm2 = nn.LayerNorm(d_model)
105
+ self.dropout1 = nn.Dropout(dropout)
106
+ self.dropout2 = nn.Dropout(dropout)
107
+ self.activation = F.relu
108
+
109
+ def _chunked_attn(
110
+ self, src: torch.Tensor, attn_mask: Optional[torch.Tensor] = None
111
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
112
+ """Perform memory-efficient chunked self attention with overlap."""
113
+ T, B, D = src.shape
114
+
115
+ # Early return for small sequences
116
+ if T <= 128 or self.chunk_size is None or self.chunk_size >= T:
117
+ return self._full_attn(src, attn_mask)
118
+
119
+ src_b = src.transpose(0, 1) # [B, T, D]
120
+ C = self.chunk_size
121
+ O = self.overlap
122
+ n_chunks = (T + C - 1) // C
123
+ pad_len = n_chunks * C - T
124
+
125
+ # Process chunks with gradient checkpointing for memory efficiency
126
+ outputs = []
127
+ weights_list = []
128
+
129
+ # Use memory-efficient processing
130
+ with torch.cuda.amp.autocast(enabled=torch.cuda.is_available()):
131
+ for chunk_idx in range(n_chunks):
132
+ start_idx = chunk_idx * C
133
+ end_idx = min(start_idx + C + 2 * O, T + O)
134
+
135
+ # Extract chunk with overlap
136
+ chunk_start = max(0, start_idx - O)
137
+ chunk_end = min(T, end_idx)
138
+ chunk = src_b[:, chunk_start:chunk_end]
139
+
140
+ # Pad if necessary
141
+ if chunk.size(1) < C + 2 * O:
142
+ pad_size = C + 2 * O - chunk.size(1)
143
+ chunk = F.pad(chunk, (0, 0, 0, pad_size))
144
+
145
+ chunk_len = chunk.size(1)
146
+ mask = get_tri_mask(chunk_len, src.device) if attn_mask is not None else None
147
+
148
+ # Apply attention to chunk
149
+ out, weights = self.self_attn(
150
+ chunk, chunk, chunk,
151
+ attn_mask=mask,
152
+ need_weights=self.full_attn_logging,
153
+ average_attn_weights=False,
154
+ )
155
+
156
+ # Extract the core part (remove overlap)
157
+ core_start = O if chunk_idx > 0 else 0
158
+ core_end = core_start + min(C, T - start_idx)
159
+ outputs.append(out[:, core_start:core_end])
160
+
161
+ if self.full_attn_logging and weights is not None:
162
+ weights_list.append(weights[:, :, core_start:core_end])
163
+
164
+ # Clear intermediate tensors to save memory
165
+ del out, weights, chunk
166
+ if torch.cuda.is_available():
167
+ torch.cuda.empty_cache()
168
+
169
+ # Concatenate outputs
170
+ seq = torch.cat(outputs, dim=1)
171
+
172
+ # Handle attention weights
173
+ if self.full_attn_logging and weights_list:
174
+ # Use sparse representation for large sequences
175
+ if T > 1024:
176
+ attn_out = torch.empty(0, device=src.device) # Skip full attention for very long sequences
177
+ else:
178
+ attn_out = torch.cat(weights_list, dim=2)
179
+ else:
180
+ attn_out = torch.empty(0, device=src.device)
181
+
182
+ return seq.transpose(0, 1), attn_out
183
+
184
+ def _full_attn(self, src: torch.Tensor, attn_mask: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, torch.Tensor]:
185
+ """Standard full attention for smaller sequences."""
186
+ qkv = src.transpose(0, 1)
187
+ attn_output, attn_weights = self.self_attn(
188
+ qkv, qkv, qkv,
189
+ attn_mask=attn_mask,
190
+ need_weights=True,
191
+ average_attn_weights=False,
192
+ )
193
+ return attn_output.transpose(0, 1), attn_weights
194
+
195
+ def forward(
196
+ self, src: torch.Tensor, attn_mask: Optional[torch.Tensor] = None
197
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
198
+ """Return output and attention map."""
199
+ if self.chunk_size is not None:
200
+ attn_output, attn_weights = self._chunked_attn(src, attn_mask)
201
+ else:
202
+ qkv = src.transpose(0, 1)
203
+ attn_output, attn_weights = self.self_attn(
204
+ qkv,
205
+ qkv,
206
+ qkv,
207
+ attn_mask=attn_mask,
208
+ need_weights=True,
209
+ average_attn_weights=False,
210
+ )
211
+ attn_output = attn_output.transpose(0, 1)
212
+ src = src + self.dropout1(attn_output)
213
+ src = self.norm1(src)
214
+ out = self.linear2(self.dropout(self.activation(self.linear1(src))))
215
+ src = src + self.dropout2(out)
216
+ src = self.norm2(src)
217
+ return src, attn_weights.detach()
218
+
219
+
220
+ class ReversibleLoggingTransformerEncoderLayer(nn.Module):
221
+ """Reversible transformer encoder layer with checkpointing."""
222
+
223
+ def __init__(
224
+ self,
225
+ d_model: int,
226
+ nhead: int,
227
+ dim_feedforward: int = 512,
228
+ dropout: float = 0.1,
229
+ chunk_size: Optional[int] = None,
230
+ overlap: int = 0,
231
+ full_attn_logging: Optional[bool] = None,
232
+ ) -> None:
233
+ super().__init__()
234
+ self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=True)
235
+ self.chunk_size = chunk_size
236
+ self.overlap = overlap
237
+ if full_attn_logging is None:
238
+ full_attn_logging = False if chunk_size is not None else True
239
+ self.full_attn_logging = full_attn_logging
240
+ self.linear1 = nn.Linear(d_model, dim_feedforward)
241
+ self.dropout = nn.Dropout(dropout)
242
+ self.linear2 = nn.Linear(dim_feedforward, d_model)
243
+ self.norm1 = nn.LayerNorm(d_model)
244
+ self.norm2 = nn.LayerNorm(d_model)
245
+ self.dropout1 = nn.Dropout(dropout)
246
+ self.dropout2 = nn.Dropout(dropout)
247
+ self.activation = F.relu
248
+
249
+ @compile_fn
250
+ def _sa_block(
251
+ self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None
252
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
253
+ if self.chunk_size is not None:
254
+ T, B, D = x.shape
255
+ x_b = x.transpose(0, 1)
256
+ C = self.chunk_size or T
257
+ O = self.overlap
258
+ n_chunks = (T + C - 1) // C
259
+ pad_len = n_chunks * C - T
260
+ src_pad = F.pad(x_b, (0, 0, O, pad_len + O))
261
+ chunk_len = C + 2 * O
262
+ chunks = src_pad.unfold(1, chunk_len, C)
263
+ mask = get_tri_mask(chunk_len, x.device) if attn_mask is not None else None
264
+ out, weights = self.self_attn(
265
+ chunks.reshape(B * n_chunks, chunk_len, D),
266
+ chunks.reshape(B * n_chunks, chunk_len, D),
267
+ chunks.reshape(B * n_chunks, chunk_len, D),
268
+ attn_mask=mask,
269
+ need_weights=True,
270
+ average_attn_weights=False,
271
+ )
272
+ out = out.view(B, n_chunks, chunk_len, D)[:, :, O : O + C]
273
+ weights = weights.view(B, n_chunks, self.self_attn.num_heads, chunk_len, chunk_len)[
274
+ :, :, :, O : O + C
275
+ ]
276
+ seq = out.reshape(B, n_chunks * C, D)[:, :T]
277
+ if self.full_attn_logging and C < T:
278
+ full_attn = torch.zeros(
279
+ B, self.self_attn.num_heads, n_chunks * C, n_chunks * C, device=x.device
280
+ )
281
+ for idx in range(n_chunks):
282
+ s = idx * C
283
+ start = max(s - O, 0)
284
+ end = min(s + C, n_chunks * C)
285
+ src_start = O - (s - start)
286
+ src_end = src_start + (end - start)
287
+ full_attn[:, :, s : s + C, start:end] = weights[
288
+ :, idx, :, src_start:src_end
289
+ ]
290
+ full_attn = full_attn[:, :, :T, :T]
291
+ weights = full_attn.detach()
292
+ else:
293
+ weights = torch.empty(0, device=x.device)
294
+ attn_out = seq.transpose(0, 1)
295
+ else:
296
+ qkv = x.transpose(0, 1)
297
+ attn_out, weights = self.self_attn(
298
+ qkv,
299
+ qkv,
300
+ qkv,
301
+ attn_mask=attn_mask,
302
+ need_weights=True,
303
+ average_attn_weights=False,
304
+ )
305
+ attn_out = attn_out.transpose(0, 1)
306
+ x = self.norm1(x + self.dropout1(attn_out))
307
+ return x, weights.detach()
308
+
309
+ @compile_fn
310
+ def _ff_block(self, x: torch.Tensor) -> torch.Tensor:
311
+ out = self.linear2(self.dropout(self.activation(self.linear1(x))))
312
+ x = self.norm2(x + self.dropout2(out))
313
+ return x
314
+
315
+ def forward(
316
+ self,
317
+ x1: torch.Tensor,
318
+ x2: torch.Tensor,
319
+ attn_mask: Optional[torch.Tensor] = None,
320
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
321
+ y1, weights = self._sa_block(x2, attn_mask)
322
+ y1 = x1 + y1
323
+ y2 = x2 + self._ff_block(y1)
324
+ return y1, y2, weights
325
+
326
+
327
+ class BitTransformerLM(nn.Module):
328
+ """Transformer language model that operates on raw bits (0/1) with telemetry."""
329
+
330
+ def __init__(
331
+ self,
332
+ d_model: int = 128,
333
+ nhead: int = 8,
334
+ num_layers: int = 4,
335
+ dim_feedforward: int = 512,
336
+ max_seq_len: int = 1024,
337
+ lambda_K: float = 1.0,
338
+ lambda_C: float = 1.0,
339
+ lambda_S: float = 1.0,
340
+ reversible: bool = False,
341
+ use_checkpoint: bool = True,
342
+ use_autocast: bool = False,
343
+ use_act: bool = False,
344
+ act_threshold: float = 0.9,
345
+ chunk_size: Optional[int] = None,
346
+ overlap: int = 0,
347
+ full_attn_logging: Optional[bool] = None,
348
+ ) -> None:
349
+ """Create a BitTransformer language model.
350
+
351
+ Args:
352
+ full_attn_logging: When ``False`` and ``chunk_size`` is
353
+ smaller than the sequence length, the model skips
354
+ reconstructing the full ``T×T`` attention matrices for
355
+ telemetry to reduce memory use.
356
+ """
357
+ super().__init__()
358
+ self.d_model = d_model
359
+ self.num_layers = num_layers
360
+ self.lambda_K = lambda_K
361
+ self.lambda_C = lambda_C
362
+ self.lambda_S = lambda_S
363
+ self.reversible = reversible
364
+ self.use_checkpoint = use_checkpoint
365
+ self.use_autocast = use_autocast
366
+ self.use_act = use_act
367
+ self.act_threshold = act_threshold
368
+ self.chunk_size = chunk_size
369
+ self.overlap = overlap
370
+ if full_attn_logging is None:
371
+ full_attn_logging = False if chunk_size is not None else True
372
+ self.full_attn_logging = full_attn_logging
373
+
374
+ # Bit embedding: two possible input values
375
+ self.embedding = nn.Embedding(2, d_model)
376
+ self.pos_enc = PositionalEncoding(d_model, max_len=max_seq_len)
377
+
378
+ layer_cls = (
379
+ ReversibleLoggingTransformerEncoderLayer
380
+ if reversible
381
+ else LoggingTransformerEncoderLayer
382
+ )
383
+ self.layers = nn.ModuleList(
384
+ [
385
+ layer_cls(
386
+ d_model=d_model,
387
+ nhead=nhead,
388
+ dim_feedforward=dim_feedforward,
389
+ chunk_size=chunk_size,
390
+ overlap=overlap,
391
+ full_attn_logging=full_attn_logging,
392
+ )
393
+ for _ in range(num_layers)
394
+ ]
395
+ )
396
+
397
+ if self.use_act:
398
+ self.halt_projs = nn.ModuleList(
399
+ [nn.Linear(d_model, 1) for _ in range(num_layers)]
400
+ )
401
+
402
+ self.out_head = nn.Linear(d_model, 2) # output logits for bit=0 or bit=1
403
+
404
+ def expand_positional_encoding(self, new_len: int) -> None:
405
+ """Expand positional encoding to at least ``new_len``."""
406
+ cur_len = self.pos_enc.pe.size(0)
407
+ if new_len <= cur_len:
408
+ return
409
+ device = self.pos_enc.pe.device
410
+ d_model = self.d_model
411
+ pe = torch.zeros(new_len, d_model, device=device)
412
+ pe[:cur_len] = self.pos_enc.pe.squeeze(1)
413
+ pos = torch.arange(cur_len, new_len, dtype=torch.float32, device=device).unsqueeze(1)
414
+ inv = torch.exp(torch.arange(0, d_model, 2, device=device).float() * -(math.log(10000.0) / d_model))
415
+ pe[cur_len:, 0::2] = torch.sin(pos * inv)
416
+ pe[cur_len:, 1::2] = torch.cos(pos * inv)
417
+ self.pos_enc.pe = pe.unsqueeze(1)
418
+
419
+ def set_lambdas(self, lambda_K: float, lambda_C: float, lambda_S: float) -> None:
420
+ """Update weighting coefficients for telemetry metrics."""
421
+ self.lambda_K = lambda_K
422
+ self.lambda_C = lambda_C
423
+ self.lambda_S = lambda_S
424
+
425
+ def _maybe_decompress(self, codes: torch.Tensor) -> torch.Tensor:
426
+ """Return raw bit sequences, decompressing if input appears run-length encoded."""
427
+ if codes.dim() <= 1:
428
+ return codes
429
+ needs_decompress = codes.max().item() > 1
430
+ if not needs_decompress and codes.size(1) % 2 == 0:
431
+ vals = codes[:, 0::2]
432
+ if torch.all(vals[:, 1:] != vals[:, :-1]):
433
+ needs_decompress = True
434
+ if not needs_decompress:
435
+ return codes
436
+ seqs = [decompress_bits(row.to(torch.uint8)) for row in codes]
437
+ max_len = max(seq.numel() for seq in seqs)
438
+ padded = [F.pad(seq, (0, max_len - seq.numel())) for seq in seqs]
439
+ return torch.stack(padded)
440
+
441
+ def negentropy_kpi(self, codes: torch.Tensor) -> torch.Tensor:
442
+ """Approximate negentropy of bit sequences.
443
+
444
+ Returns a value in ``[0, 1]`` where ``1`` denotes a perfectly ordered
445
+ sequence (all zeros or ones) and ``0`` reflects maximal entropy.
446
+ """
447
+ codes = self._maybe_decompress(codes)
448
+ p = codes.float().mean(dim=1)
449
+ entropy = -(p * torch.log(p + 1e-9) + (1 - p) * torch.log(1 - p + 1e-9))
450
+ max_e = math.log(2.0)
451
+ return 1 - entropy / max_e
452
+
453
+ def lz_complexity(self, codes: torch.Tensor) -> torch.Tensor:
454
+ """Differentiable proxy for Lempel–Ziv complexity.
455
+
456
+ Values near ``0`` indicate highly compressible sequences while values
457
+ approaching ``1`` correspond to rapid bit alternation.
458
+ """
459
+ codes = self._maybe_decompress(codes)
460
+ diffs = torch.abs(codes[:, 1:] - codes[:, :-1])
461
+ return diffs.float().mean(dim=1)
462
+
463
+ def negentropy_logits(self, logits: torch.Tensor, detach: bool = True) -> torch.Tensor:
464
+ """Negentropy computed from model logits.
465
+
466
+ Parameters
467
+ ----------
468
+ logits: ``torch.Tensor``
469
+ Logit tensor of shape ``(B, T, 2)``.
470
+ detach: bool, default ``True``
471
+ When ``True`` the computation is detached from the autograd graph.
472
+ """
473
+ assert logits.dim() == 3 and logits.size(-1) == 2, "logits must be [B,T,2]"
474
+ prob = logits.softmax(-1)
475
+ if detach:
476
+ prob = prob.detach()
477
+ p = prob[..., 1].mean(dim=1)
478
+ entropy = -(p * torch.log(p + 1e-9) + (1 - p) * torch.log(1 - p + 1e-9))
479
+ max_e = math.log(2.0)
480
+ return 1 - entropy / max_e
481
+
482
+ def lz_complexity_logits(self, logits: torch.Tensor, detach: bool = True) -> torch.Tensor:
483
+ """LZ complexity proxy computed from logits.
484
+
485
+ Parameters
486
+ ----------
487
+ logits: ``torch.Tensor``
488
+ Logit tensor of shape ``(B, T, 2)``.
489
+ detach: bool, default ``True``
490
+ When ``True`` the computation is detached from the autograd graph.
491
+ """
492
+ assert logits.dim() == 3 and logits.size(-1) == 2, "logits must be [B,T,2]"
493
+ prob = logits.softmax(-1)
494
+ if detach:
495
+ prob = prob.detach()
496
+ prob1 = prob[..., 1]
497
+ diffs = torch.abs(prob1[:, 1:] - prob1[:, :-1])
498
+ return diffs.mean(dim=1)
499
+
500
+ def symbiosis_kl_logits(
501
+ self, logits: torch.Tensor, ref_prob: float = 0.5, detach: bool = True
502
+ ) -> torch.Tensor:
503
+ """Symbiosis score from KL divergence to a reference distribution.
504
+
505
+ Returns a value in ``[0, 1]`` with ``1`` meaning perfect agreement with
506
+ the reference distribution and ``0`` indicating maximal divergence.
507
+ """
508
+ assert logits.dim() == 3 and logits.size(-1) == 2, "logits must be [B,T,2]"
509
+ probs = logits.softmax(-1)
510
+ if detach:
511
+ probs = probs.detach()
512
+ ref = torch.tensor([1 - ref_prob, ref_prob], device=logits.device)
513
+ kl = (probs * (probs.clamp_min(1e-9).log() - ref.log())).sum(-1).mean(dim=1)
514
+ max_kl = math.log(2.0)
515
+ return 1 - kl / max_kl
516
+
517
+ def _act_step(
518
+ self,
519
+ hidden: torch.Tensor,
520
+ idx: int,
521
+ halt_prob: torch.Tensor,
522
+ act_state: torch.Tensor,
523
+ halt_history: List[torch.Tensor],
524
+ ) -> Tuple[torch.Tensor, torch.Tensor, bool]:
525
+ """Apply one step of ACT halting logic."""
526
+ p = torch.sigmoid(self.halt_projs[idx](hidden))
527
+ delta = (1 - halt_prob) * p
528
+ halt_prob = halt_prob + delta
529
+ act_state = act_state + hidden * delta
530
+ halt_history.append(halt_prob.detach())
531
+ min_prob = halt_prob.detach().min()
532
+ if dist.is_initialized():
533
+ dist.all_reduce(min_prob, op=dist.ReduceOp.MIN)
534
+ return halt_prob, act_state, min_prob.item() >= self.act_threshold
535
+
536
+ def forward(
537
+ self, bit_seq: torch.Tensor, causal: bool = True
538
+ ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
539
+ """Forward pass returning logits and telemetry from the same graph.
540
+
541
+ By default the model uses causal masking and (optional) chunked
542
+ attention. When ``causal`` is ``False`` the model operates in
543
+ "Diffusion LM" mode. In this mode chunked attention is temporarily
544
+ disabled so that every token can attend to the full sequence
545
+ bidirectionally. The original chunking configuration is restored after
546
+ the forward pass.
547
+ """
548
+
549
+ # Disable chunking when running in bidirectional (non-causal) mode
550
+ orig_chunks = None
551
+ orig_model_chunk = None
552
+ if not causal and self.chunk_size is not None:
553
+ orig_model_chunk = self.chunk_size
554
+ orig_chunks = [layer.chunk_size for layer in self.layers]
555
+ self.chunk_size = None
556
+ for layer in self.layers:
557
+ layer.chunk_size = None
558
+
559
+ try:
560
+ ctx = cpu_autocast() if self.use_autocast else contextlib.nullcontext()
561
+ with ctx:
562
+ x = self.embedding(bit_seq).transpose(0, 1) * math.sqrt(self.d_model)
563
+ x = self.pos_enc(x)
564
+
565
+ attn_mask = get_tri_mask(x.size(0), x.device) if causal else None
566
+
567
+ activations: List[torch.Tensor] = []
568
+ attn_maps: List[torch.Tensor] = []
569
+ halt_history: List[torch.Tensor] = []
570
+ if self.use_act:
571
+ halt_prob = torch.zeros(x.size(0), x.size(1), 1, device=x.device)
572
+ act_state = torch.zeros_like(x)
573
+ if self.reversible:
574
+ x1, x2 = x, x
575
+ for idx, layer in enumerate(self.layers):
576
+ if self.use_checkpoint:
577
+ x1, x2, attn = checkpoint.checkpoint(
578
+ layer, x1, x2, attn_mask
579
+ )
580
+ else:
581
+ x1, x2, attn = layer(x1, x2, attn_mask)
582
+ combined = (x1 + x2) / 2
583
+ activations.append(combined)
584
+ if attn.numel() > 0:
585
+ attn_maps.append(attn)
586
+ if self.use_act:
587
+ halt_prob, act_state, should_break = self._act_step(
588
+ combined, idx, halt_prob, act_state, halt_history
589
+ )
590
+ if should_break:
591
+ break
592
+ x = (x1 + x2) / 2
593
+ else:
594
+ for idx, layer in enumerate(self.layers):
595
+ if self.use_checkpoint:
596
+ x, attn = checkpoint.checkpoint(layer, x, attn_mask)
597
+ else:
598
+ x, attn = layer(x, attn_mask)
599
+ activations.append(x)
600
+ if attn.numel() > 0:
601
+ attn_maps.append(attn)
602
+ if self.use_act:
603
+ halt_prob, act_state, should_break = self._act_step(
604
+ x, idx, halt_prob, act_state, halt_history
605
+ )
606
+ if should_break:
607
+ break
608
+ if self.use_act:
609
+ act_state = act_state + x * (1 - halt_prob)
610
+ x = act_state
611
+ logits = self.out_head(x)
612
+
613
+ # Per-layer entropy of activations
614
+ entropies = []
615
+ for act in activations:
616
+ prob = act.softmax(-1)
617
+ ent = -(prob * prob.clamp_min(1e-9).log()).sum(-1).mean()
618
+ entropies.append(ent)
619
+
620
+ attn_entropies = []
621
+ for attn in attn_maps:
622
+ prob = attn # weights are already softmaxed
623
+ ent = -(prob * prob.clamp_min(1e-9).log()).sum(-1)
624
+ ent = ent.mean(1)
625
+ attn_entropies.append(ent)
626
+ if attn_entropies:
627
+ attn_entropy_map = torch.stack(attn_entropies).mean(0)
628
+ else:
629
+ attn_entropy_map = torch.zeros(
630
+ bit_seq.size(0), bit_seq.size(1), device=bit_seq.device
631
+ )
632
+ max_ent = math.log(attn_entropy_map.size(-1))
633
+ attn_entropy_map = attn_entropy_map / max_ent
634
+ attn_entropy = attn_entropy_map.mean(1)
635
+
636
+ logits_bt = logits.transpose(0, 1)
637
+ negentropy_in = self.negentropy_kpi(bit_seq)
638
+ lz_in = self.lz_complexity(bit_seq.float())
639
+ negentropy_logits_b = self.negentropy_logits(logits_bt, detach=False)
640
+ lz_logits_b = self.lz_complexity_logits(logits_bt, detach=False)
641
+ kl_div_b = self.symbiosis_kl_logits(logits_bt, detach=False)
642
+
643
+ raw_sym = (
644
+ (self.lambda_K * negentropy_logits_b + self.lambda_C * lz_logits_b) / 2
645
+ + negentropy_logits_b * lz_logits_b
646
+ - self.lambda_S * kl_div_b
647
+ - 0.1 * attn_entropy
648
+ )
649
+ weight_norm = torch.stack([p.norm() for p in self.parameters()]).mean().detach()
650
+ raw_sym = raw_sym - 0.01 * weight_norm
651
+ sym_score = torch.sigmoid(raw_sym)
652
+
653
+ B, T = bit_seq.shape
654
+ assert logits_bt.shape[:2] == (B, T)
655
+ assert attn_entropy_map.shape == (B, T)
656
+
657
+ telemetry = {
658
+ "activations": activations,
659
+ "attention_maps": attn_maps,
660
+ "attention_entropy": attn_entropy_map,
661
+ "entropy": entropies,
662
+ "attention_entropy_mean": attn_entropy,
663
+ "negentropy_input": negentropy_in.detach(),
664
+ "lz_complexity_input": lz_in.detach(),
665
+ "negentropy_logits": negentropy_logits_b.detach(),
666
+ "lz_complexity_logits": lz_logits_b.detach(),
667
+ "symbiosis_kl": kl_div_b.detach(),
668
+ "symbiosis_score": sym_score.detach(),
669
+ }
670
+ if self.use_act:
671
+ telemetry["halt_probs"] = halt_history
672
+
673
+ return logits_bt, telemetry
674
+ finally:
675
+ if orig_chunks is not None:
676
+ self.chunk_size = orig_model_chunk
677
+ for layer, chunk in zip(self.layers, orig_chunks):
678
+ layer.chunk_size = chunk
679
+
680
+ def forward_compressed(
681
+ self, compressed_bits, causal: bool = True
682
+ ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
683
+ """Decompress bit sequences then run the normal forward pass."""
684
+ if isinstance(compressed_bits, torch.Tensor) and compressed_bits.dim() == 1:
685
+ sequences = [decompress_bits(compressed_bits).to(torch.long)]
686
+ else:
687
+ sequences = [decompress_bits(c).to(torch.long) for c in compressed_bits]
688
+ lengths = [seq.numel() for seq in sequences]
689
+ if len(set(lengths)) != 1:
690
+ raise ValueError("Sequences decompress to different lengths")
691
+ bits = torch.stack(sequences)
692
+ return self.forward(bits, causal=causal)
693
+
694
+ def _current_params(self) -> Dict:
695
+ """Return a dictionary with the current model hyperparameters."""
696
+ return {
697
+ "d_model": self.d_model,
698
+ "nhead": self.layers[0].self_attn.num_heads,
699
+ "num_layers": self.num_layers,
700
+ "dim_feedforward": self.layers[0].linear1.out_features,
701
+ "max_seq_len": self.pos_enc.pe.size(0),
702
+ "lambda_K": self.lambda_K,
703
+ "lambda_C": self.lambda_C,
704
+ "lambda_S": self.lambda_S,
705
+ "reversible": self.reversible,
706
+ "use_checkpoint": self.use_checkpoint,
707
+ "use_autocast": self.use_autocast,
708
+ "use_act": self.use_act,
709
+ "act_threshold": self.act_threshold,
710
+ "chunk_size": self.chunk_size,
711
+ "overlap": self.overlap,
712
+ }
713
+
714
+ def double_width(self) -> "BitTransformerLM":
715
+ """Return a copy of the model with doubled hidden size."""
716
+ from .scale import expand_model
717
+
718
+ params = self._current_params()
719
+ params["d_model"] *= 2
720
+ params["dim_feedforward"] *= 2
721
+ return expand_model(self, params)
722
+
723
+ def double_layers(self) -> "BitTransformerLM":
724
+ """Return a copy of the model with twice as many layers."""
725
+ from .scale import expand_model
726
+
727
+ params = self._current_params()
728
+ params["num_layers"] *= 2
729
+ return expand_model(self, params)
730
+
731
+ def double_length(self) -> "BitTransformerLM":
732
+ """Return a copy of the model with doubled maximum sequence length."""
733
+ from .scale import expand_model
734
+
735
+ params = self._current_params()
736
+ params["max_seq_len"] *= 2
737
+ params["chunk_size"] = params["max_seq_len"]
738
+ return expand_model(self, params)
739
+
740
+ def train_full_sequence(
741
+ self,
742
+ bits: torch.Tensor,
743
+ *,
744
+ ctx_bits: int = 4096,
745
+ detach_every_n: int = 1_048_576,
746
+ ) -> float:
747
+ """Train on a long bit tensor using sliding windows.
748
+
749
+ Parameters
750
+ ----------
751
+ bits: ``torch.Tensor``
752
+ 1D tensor containing the full bit sequence.
753
+ ctx_bits: int
754
+ Size of the training context window.
755
+ detach_every_n: int
756
+ Interval in bits for optimizer updates and graph detachment.
757
+ Returns
758
+ -------
759
+ float
760
+ Mean loss over all windows.
761
+ """
762
+ self.train()
763
+ optimizer, scheduler = configure_optimizer(
764
+ self, lr=1e-3, total_steps=max(1, bits.numel() // ctx_bits)
765
+ )
766
+ accum = 0
767
+ total_loss = 0.0
768
+ count = 0
769
+ for start in range(0, bits.numel() - ctx_bits - 1, ctx_bits):
770
+ segment = bits[start : start + ctx_bits + 1].unsqueeze(0)
771
+ logits, _ = self(segment)
772
+ pred = logits[:, :-1, :].reshape(-1, 2)
773
+ target = segment[:, 1:].reshape(-1)
774
+ loss = F.cross_entropy(pred, target)
775
+ loss.backward()
776
+ accum += ctx_bits
777
+ total_loss += loss.item()
778
+ count += 1
779
+ if accum >= detach_every_n:
780
+ torch.nn.utils.clip_grad_norm_(self.parameters(), 1.0)
781
+ optimizer.step()
782
+ scheduler.step()
783
+ optimizer.zero_grad()
784
+ accum = 0
785
+ if accum > 0:
786
+ torch.nn.utils.clip_grad_norm_(self.parameters(), 1.0)
787
+ optimizer.step()
788
+ scheduler.step()
789
+ optimizer.zero_grad()
790
+ return total_loss / max(1, count)
791
+
792
+
793
+ def infer_long_sequence(
794
+ model: BitTransformerLM,
795
+ bits: torch.Tensor,
796
+ *,
797
+ ctx_bits: int = 4096,
798
+ overlap: int = 256,
799
+ ) -> Tuple[torch.Tensor, List[Dict[str, torch.Tensor]]]:
800
+ """Infer a long bit sequence using sliding windows with overlap."""
801
+ model.eval()
802
+ device = next(model.parameters()).device
803
+ bits = bits.to(device)
804
+ step = ctx_bits - overlap
805
+ outputs: List[torch.Tensor] = []
806
+ logs: List[Dict[str, torch.Tensor]] = []
807
+ for start in range(0, bits.numel(), step):
808
+ window = bits[start : start + ctx_bits].unsqueeze(0)
809
+ logits, tele = model(window, causal=True)
810
+ pred = logits.argmax(-1).squeeze(0)
811
+ outputs.append(pred)
812
+ logs.append(tele)
813
+ out = torch.cat(outputs)[: bits.numel()]
814
+ return out, logs
815
+
816
+
817
+ def diffusion_inference(
818
+ model: BitTransformerLM,
819
+ *,
820
+ length: int,
821
+ steps: int = 8,
822
+ batch_size: int = 1,
823
+ init_bits: Optional[torch.Tensor] = None,
824
+ schedule: str = "linear",
825
+ ) -> torch.Tensor:
826
+ """Generate bit sequences using iterative denoising diffusion.
827
+
828
+ Parameters
829
+ ----------
830
+ model: ``BitTransformerLM``
831
+ The model used for denoising. It is run in non-causal mode with
832
+ chunked attention disabled, enabling full-context bidirectional
833
+ attention.
834
+ length: int
835
+ Length of the bit sequences to generate.
836
+ steps: int, default ``8``
837
+ Number of denoising iterations. More steps generally yield sharper
838
+ samples at the cost of compute.
839
+ batch_size: int, default ``1``
840
+ Number of sequences to generate in parallel.
841
+ init_bits: ``torch.Tensor`` | ``None``
842
+ Optional initial noisy bits of shape ``(batch_size, length)``. When
843
+ ``None`` random noise is used.
844
+ schedule: str, default ``"linear"``
845
+ Noise schedule for the denoising mask probability. Options are
846
+ ``"linear"``, ``"cosine"``, and ``"exp"``.
847
+
848
+ Returns
849
+ -------
850
+ ``torch.Tensor``
851
+ A tensor of shape ``(batch_size, length)`` containing generated bits.
852
+ """
853
+
854
+ model.eval()
855
+ device = next(model.parameters()).device
856
+ if init_bits is None:
857
+ bits = torch.randint(0, 2, (batch_size, length), device=device)
858
+ else:
859
+ bits = init_bits.to(device)
860
+ if bits.shape != (batch_size, length):
861
+ raise ValueError("init_bits must have shape (batch_size, length)")
862
+
863
+ for step in range(steps):
864
+ logits, _ = model(bits, causal=False)
865
+ prob = logits.softmax(-1)[..., 1]
866
+ t = (step + 1) / steps
867
+ if schedule == "linear":
868
+ mask_prob = 1.0 - t
869
+ elif schedule == "cosine":
870
+ mask_prob = math.cos(math.pi * t / 2)
871
+ elif schedule == "exp":
872
+ mask_prob = math.exp(-5 * t)
873
+ else:
874
+ raise ValueError(f"unknown schedule: {schedule}")
875
+ mask = (torch.rand_like(bits.float()) < mask_prob).long()
876
+ sampled = torch.bernoulli(prob).long()
877
+ bits = torch.where(mask.bool(), sampled, bits)
878
+ if bits.shape[-1] % 9 == 0:
879
+ bits, corrections = enforce_parity(bits)
880
+ if corrections:
881
+ logging.info("Parity corrections applied: %d", corrections)
882
+ try:
883
+ from .safety import hil_safe_inference
884
+
885
+ hil_safe_inference(model, bits, causal=False, strict=False)
886
+ except RuntimeError as exc:
887
+ logging.warning("Safety gate warning: %s", exc)
888
+ return bits
889
+
890
+
891
+ def example_usage() -> float:
892
+ """Run the example from the README and return the loss."""
893
+ B, L = 4, 16
894
+ model = BitTransformerLM(
895
+ d_model=64, nhead=4, num_layers=2, dim_feedforward=256, max_seq_len=L
896
+ )
897
+ bits = torch.randint(0, 2, (B, L), dtype=torch.long)
898
+ logits, _ = model(bits)
899
+ pred = logits[:, :-1, :].reshape(-1, 2)
900
+ target = bits[:, 1:].reshape(-1)
901
+ loss = F.cross_entropy(pred, target)
902
+ return loss.item()
903
+
904
+
905
+ def example_training_step() -> Tuple[float, Dict[str, torch.Tensor]]:
906
+ """Demonstrate a training step where metrics do not affect gradients."""
907
+ B, L = 4, 16
908
+ model = BitTransformerLM(
909
+ d_model=32, nhead=4, num_layers=1, dim_feedforward=64, max_seq_len=L
910
+ )
911
+ optimizer, scheduler = configure_optimizer(model, lr=1e-3, total_steps=1)
912
+
913
+ bits = torch.randint(0, 2, (B, L), dtype=torch.long)
914
+ logits, telemetry = model(bits)
915
+
916
+ pred = logits[:, :-1, :].reshape(-1, 2)
917
+ target = bits[:, 1:].reshape(-1)
918
+ loss = F.cross_entropy(pred, target)
919
+
920
+ loss.backward()
921
+ torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
922
+ optimizer.step()
923
+ scheduler.step()
924
+ optimizer.zero_grad()
925
+ return loss.item(), telemetry
926
+
927
+
928
+ if __name__ == "__main__":
929
+ loss, telemetry = example_training_step()
930
+ print("Composite loss:", loss)
931
+ print("Telemetry keys:", list(telemetry.keys()))