import os, sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) import torch from bit_transformer import BitTransformerLM from bit_transformer.training import train_loop as train def test_train_compression_metrics(): model = BitTransformerLM(d_model=16, nhead=4, num_layers=1, dim_feedforward=32, max_seq_len=8) data = torch.zeros((4, 8), dtype=torch.long) metrics = train(model, data, epochs=1, compress_prob=1.0, log=False) m = metrics[0] assert m['compressed_loss'] > 0 assert m['compression_ratio'] < 1.0 assert m['raw_loss'] == 0 def test_train_no_compression(): model = BitTransformerLM(d_model=16, nhead=4, num_layers=1, dim_feedforward=32, max_seq_len=8) data = torch.zeros((4, 8), dtype=torch.long) metrics = train(model, data, epochs=1, compress_prob=0.0, log=False) m = metrics[0] assert m['raw_loss'] > 0 assert m['compressed_loss'] == 0 def test_train_direct_compression(): model = BitTransformerLM(d_model=16, nhead=4, num_layers=1, dim_feedforward=32, max_seq_len=8) data = torch.zeros((4, 8), dtype=torch.long) metrics = train(model, data, epochs=1, compress_prob=0.0, direct_prob=1.0, log=False) m = metrics[0] assert m['direct_loss'] > 0 def test_diffusion_training_loop(): model = BitTransformerLM(d_model=16, nhead=4, num_layers=1, dim_feedforward=32, max_seq_len=8) data = torch.randint(0, 2, (4, 8), dtype=torch.long) metrics = train(model, data, epochs=1, diffusion=True, log=False) m = metrics[0] assert m['raw_loss'] > 0